(Un)certainty of (Un)fairness: Preference-Based Selection of Certainly Fair Decision-Makers
- URL: http://arxiv.org/abs/2409.12677v1
- Date: Thu, 19 Sep 2024 11:44:03 GMT
- Title: (Un)certainty of (Un)fairness: Preference-Based Selection of Certainly Fair Decision-Makers
- Authors: Manh Khoi Duong, Stefan Conrad,
- Abstract summary: Fairness metrics are used to assess discrimination and bias in decision-making processes across various domains.
We quantify the uncertainty of the disparity to enhance discrimination assessments.
We define preferences over decision-makers and utilize brute-force to choose the optimal decision-maker.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Fairness metrics are used to assess discrimination and bias in decision-making processes across various domains, including machine learning models and human decision-makers in real-world applications. This involves calculating the disparities between probabilistic outcomes among social groups, such as acceptance rates between male and female applicants. However, traditional fairness metrics do not account for the uncertainty in these processes and lack of comparability when two decision-makers exhibit the same disparity. Using Bayesian statistics, we quantify the uncertainty of the disparity to enhance discrimination assessments. We represent each decision-maker, whether a machine learning model or a human, by its disparity and the corresponding uncertainty in that disparity. We define preferences over decision-makers and utilize brute-force to choose the optimal decision-maker according to a utility function that ranks decision-makers based on these preferences. The decision-maker with the highest utility score can be interpreted as the one for whom we are most certain that it is fair.
Related papers
- Causal Fairness for Outcome Control [68.12191782657437]
We study a specific decision-making task called outcome control in which an automated system aims to optimize an outcome variable $Y$ while being fair and equitable.
In this paper, we first analyze through causal lenses the notion of benefit, which captures how much a specific individual would benefit from a positive decision.
We then note that the benefit itself may be influenced by the protected attribute, and propose causal tools which can be used to analyze this.
arXiv Detail & Related papers (2023-06-08T09:31:18Z) - Measuring Classification Decision Certainty and Doubt [61.13511467941388]
We propose intuitive scores, which we call certainty and doubt, to assess and compare the quality and uncertainty of predictions in (multi-)classification decision machine learning problems.
arXiv Detail & Related papers (2023-03-25T21:31:41Z) - Fairness in Matching under Uncertainty [78.39459690570531]
algorithmic two-sided marketplaces have drawn attention to the issue of fairness in such settings.
We axiomatize a notion of individual fairness in the two-sided marketplace setting which respects the uncertainty in the merits.
We design a linear programming framework to find fair utility-maximizing distributions over allocations.
arXiv Detail & Related papers (2023-02-08T00:30:32Z) - In Search of Insights, Not Magic Bullets: Towards Demystification of the
Model Selection Dilemma in Heterogeneous Treatment Effect Estimation [92.51773744318119]
This paper empirically investigates the strengths and weaknesses of different model selection criteria.
We highlight that there is a complex interplay between selection strategies, candidate estimators and the data used for comparing them.
arXiv Detail & Related papers (2023-02-06T16:55:37Z) - Survey on Fairness Notions and Related Tensions [4.257210316104905]
Automated decision systems are increasingly used to take consequential decisions in problems such as job hiring and loan granting.
However, objective machine learning (ML) algorithms are prone to bias, which results in yet unfair decisions.
This paper surveys the commonly used fairness notions and discusses the tensions among them with privacy and accuracy.
arXiv Detail & Related papers (2022-09-16T13:36:05Z) - Causal Fairness Analysis [68.12191782657437]
We introduce a framework for understanding, modeling, and possibly solving issues of fairness in decision-making settings.
The main insight of our approach will be to link the quantification of the disparities present on the observed data with the underlying, and often unobserved, collection of causal mechanisms.
Our effort culminates in the Fairness Map, which is the first systematic attempt to organize and explain the relationship between different criteria found in the literature.
arXiv Detail & Related papers (2022-07-23T01:06:34Z) - Explainability's Gain is Optimality's Loss? -- How Explanations Bias
Decision-making [0.0]
Explanations help to facilitate communication between the algorithm and the human decision-maker.
Feature-based explanations' semantics of causal models induce leakage from the decision-maker's prior beliefs.
Such differences can lead to sub-optimal and biased decision outcomes.
arXiv Detail & Related papers (2022-06-17T11:43:42Z) - A Justice-Based Framework for the Analysis of Algorithmic
Fairness-Utility Trade-Offs [0.0]
In prediction-based decision-making systems, different perspectives can be at odds.
The short-term business goals of the decision makers are often in conflict with the decision subjects' wish to be treated fairly.
We propose a framework to make these value-laden choices clearly visible.
arXiv Detail & Related papers (2022-06-06T20:31:55Z) - Testing Relative Fairness in Human Decisions With Machine Learning [4.8518076650315045]
This work aims to test relative fairness in human decisions.
Instead of defining what are "absolute" fair decisions, we check the relative fairness of one decision set against another.
We show that a machine learning model trained on the human decisions can inherit the bias/preference.
arXiv Detail & Related papers (2021-12-21T15:05:42Z) - On Fair Selection in the Presence of Implicit and Differential Variance [22.897402186120434]
We study a model where the decision maker receives a noisy estimate of each candidate's quality, whose variance depends on the candidate's group.
We show that both baseline decision makers yield discrimination, although in opposite directions.
arXiv Detail & Related papers (2021-12-10T16:04:13Z) - Algorithmic Decision Making with Conditional Fairness [48.76267073341723]
We define conditional fairness as a more sound fairness metric by conditioning on the fairness variables.
We propose a Derivable Conditional Fairness Regularizer (DCFR) to track the trade-off between precision and fairness of algorithmic decision making.
arXiv Detail & Related papers (2020-06-18T12:56:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.