Measuring Classification Decision Certainty and Doubt
- URL: http://arxiv.org/abs/2303.14568v2
- Date: Tue, 28 Mar 2023 01:27:51 GMT
- Title: Measuring Classification Decision Certainty and Doubt
- Authors: Alexander M. Berenbeim, Iain J. Cruickshank, Susmit Jha, Robert H.
Thomson, and Nathaniel D. Bastian
- Abstract summary: We propose intuitive scores, which we call certainty and doubt, to assess and compare the quality and uncertainty of predictions in (multi-)classification decision machine learning problems.
- Score: 61.13511467941388
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantitative characterizations and estimations of uncertainty are of
fundamental importance in optimization and decision-making processes. Herein,
we propose intuitive scores, which we call certainty and doubt, that can be
used in both a Bayesian and frequentist framework to assess and compare the
quality and uncertainty of predictions in (multi-)classification decision
machine learning problems.
Related papers
- Know Where You're Uncertain When Planning with Multimodal Foundation Models: A Formal Framework [54.40508478482667]
We present a comprehensive framework to disentangle, quantify, and mitigate uncertainty in perception and plan generation.
We propose methods tailored to the unique properties of perception and decision-making.
We show that our uncertainty disentanglement framework reduces variability by up to 40% and enhances task success rates by 5% compared to baselines.
arXiv Detail & Related papers (2024-11-03T17:32:00Z) - (Un)certainty of (Un)fairness: Preference-Based Selection of Certainly Fair Decision-Makers [0.0]
Fairness metrics are used to assess discrimination and bias in decision-making processes across various domains.
We quantify the uncertainty of the disparity to enhance discrimination assessments.
We define preferences over decision-makers and utilize brute-force to choose the optimal decision-maker.
arXiv Detail & Related papers (2024-09-19T11:44:03Z) - Certainly Uncertain: A Benchmark and Metric for Multimodal Epistemic and Aleatoric Awareness [106.52630978891054]
We present a taxonomy of uncertainty specific to vision-language AI systems.
We also introduce a new metric confidence-weighted accuracy, that is well correlated with both accuracy and calibration error.
arXiv Detail & Related papers (2024-07-02T04:23:54Z) - A Structured Review of Literature on Uncertainty in Machine Learning & Deep Learning [0.8667724053232616]
We focus on a critical concern for adaptation of Machine Learning in risk-sensitive applications, namely understanding and quantifying uncertainty.
Our paper approaches this topic in a structured way, providing a review of the literature in the various facets that uncertainty is enveloped in the ML process.
Key contributions in this review are broadening the scope of uncertainty discussion, as well as an updated review of uncertainty quantification methods in Deep Learning.
arXiv Detail & Related papers (2024-06-01T07:17:38Z) - One step closer to unbiased aleatoric uncertainty estimation [71.55174353766289]
We propose a new estimation method by actively de-noising the observed data.
By conducting a broad range of experiments, we demonstrate that our proposed approach provides a much closer approximation to the actual data uncertainty than the standard method.
arXiv Detail & Related papers (2023-12-16T14:59:11Z) - Likelihood Ratio Confidence Sets for Sequential Decision Making [51.66638486226482]
We revisit the likelihood-based inference principle and propose to use likelihood ratios to construct valid confidence sequences.
Our method is especially suitable for problems with well-specified likelihoods.
We show how to provably choose the best sequence of estimators and shed light on connections to online convex optimization.
arXiv Detail & Related papers (2023-11-08T00:10:21Z) - Robust Design and Evaluation of Predictive Algorithms under Unobserved Confounding [2.8498944632323755]
We propose a unified framework for the robust design and evaluation of predictive algorithms in selectively observed data.
We impose general assumptions on how much the outcome may vary on average between unselected and selected units.
We develop debiased machine learning estimators for the bounds on a large class of predictive performance estimands.
arXiv Detail & Related papers (2022-12-19T20:41:44Z) - Uncertainty-Driven Action Quality Assessment [67.20617610820857]
We propose a novel probabilistic model, named Uncertainty-Driven AQA (UD-AQA), to capture the diversity among multiple judge scores.
We generate the estimation of uncertainty for each prediction, which is employed to re-weight AQA regression loss.
Our proposed method achieves competitive results on three benchmarks including the Olympic events MTL-AQA and FineDiving, and the surgical skill JIGSAWS datasets.
arXiv Detail & Related papers (2022-07-29T07:21:15Z) - Explainability's Gain is Optimality's Loss? -- How Explanations Bias
Decision-making [0.0]
Explanations help to facilitate communication between the algorithm and the human decision-maker.
Feature-based explanations' semantics of causal models induce leakage from the decision-maker's prior beliefs.
Such differences can lead to sub-optimal and biased decision outcomes.
arXiv Detail & Related papers (2022-06-17T11:43:42Z) - Ensemble-based Uncertainty Quantification: Bayesian versus Credal
Inference [0.0]
We consider ensemble-based approaches to uncertainty quantification.
We specifically focus on Bayesian methods and approaches based on so-called credal sets.
The effectiveness of corresponding measures is evaluated and compared in an empirical study on classification with a reject option.
arXiv Detail & Related papers (2021-07-21T22:47:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.