Exploring Large Language Models for Product Attribute Value Identification
- URL: http://arxiv.org/abs/2409.12695v1
- Date: Thu, 19 Sep 2024 12:09:33 GMT
- Title: Exploring Large Language Models for Product Attribute Value Identification
- Authors: Kassem Sabeh, Mouna Kacimi, Johann Gamper, Robert Litschko, Barbara Plank,
- Abstract summary: Product attribute value identification (PAVI) involves automatically identifying attributes and their values from product information.
Existing methods rely on fine-tuning pre-trained language models, such as BART and T5.
This paper explores large language models (LLMs), such as LLaMA and Mistral, as data-efficient and robust alternatives for PAVI.
- Score: 25.890927969633196
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Product attribute value identification (PAVI) involves automatically identifying attributes and their values from product information, enabling features like product search, recommendation, and comparison. Existing methods primarily rely on fine-tuning pre-trained language models, such as BART and T5, which require extensive task-specific training data and struggle to generalize to new attributes. This paper explores large language models (LLMs), such as LLaMA and Mistral, as data-efficient and robust alternatives for PAVI. We propose various strategies: comparing one-step and two-step prompt-based approaches in zero-shot settings and utilizing parametric and non-parametric knowledge through in-context learning examples. We also introduce a dense demonstration retriever based on a pre-trained T5 model and perform instruction fine-tuning to explicitly train LLMs on task-specific instructions. Extensive experiments on two product benchmarks show that our two-step approach significantly improves performance in zero-shot settings, and instruction fine-tuning further boosts performance when using training data, demonstrating the practical benefits of using LLMs for PAVI.
Related papers
- SELF-GUIDE: Better Task-Specific Instruction Following via Self-Synthetic Finetuning [70.21358720599821]
Large language models (LLMs) hold the promise of solving diverse tasks when provided with appropriate natural language prompts.
We propose SELF-GUIDE, a multi-stage mechanism in which we synthesize task-specific input-output pairs from the student LLM.
We report an absolute improvement of approximately 15% for classification tasks and 18% for generation tasks in the benchmark's metrics.
arXiv Detail & Related papers (2024-07-16T04:41:58Z) - Enhancing and Assessing Instruction-Following with Fine-Grained Instruction Variants [28.691691883519542]
We introduce a technique that decomposes complex instructions into simpler sub-components, modifies these, and reconstructs them into new variants.
Based on DeMoRecon, we developed the FGIV dataset which contains fine-grained instruction variants of 1,773 seed instructions.
Our findings show that LLMs fine-tuned with FGIV will gain significant performance boost on both ours and commonly used instructions-following benchmarks.
arXiv Detail & Related papers (2024-06-17T08:08:11Z) - Learning Semantic Proxies from Visual Prompts for Parameter-Efficient Fine-Tuning in Deep Metric Learning [13.964106147449051]
Existing solutions concentrate on fine-tuning the pre-trained models on conventional image datasets.
We propose a novel and effective framework based on learning Visual Prompts (VPT) in the pre-trained Vision Transformers (ViT)
We demonstrate that our new approximations with semantic information are superior to representative capabilities.
arXiv Detail & Related papers (2024-02-04T04:42:05Z) - When Parameter-efficient Tuning Meets General-purpose Vision-language
Models [65.19127815275307]
PETAL revolutionizes the training process by requiring only 0.5% of the total parameters, achieved through a unique mode approximation technique.
Our experiments reveal that PETAL not only outperforms current state-of-the-art methods in most scenarios but also surpasses full fine-tuning models in effectiveness.
arXiv Detail & Related papers (2023-12-16T17:13:08Z) - LLMaAA: Making Large Language Models as Active Annotators [32.57011151031332]
We propose LLMaAA, which takes large language models as annotators and puts them into an active learning loop to determine what to annotate efficiently.
We conduct experiments and analysis on two classic NLP tasks, named entity recognition and relation extraction.
With LLMaAA, task-specific models trained from LLM-generated labels can outperform the teacher within only hundreds of annotated examples.
arXiv Detail & Related papers (2023-10-30T14:54:15Z) - ExtractGPT: Exploring the Potential of Large Language Models for Product Attribute Value Extraction [52.14681890859275]
E-commerce platforms require structured product data in the form of attribute-value pairs.
BERT-based extraction methods require large amounts of task-specific training data.
This paper explores using large language models (LLMs) as a more training-data efficient and robust alternative.
arXiv Detail & Related papers (2023-10-19T07:39:00Z) - LLM-augmented Preference Learning from Natural Language [19.700169351688768]
Large Language Models (LLMs) are equipped to deal with larger context lengths.
LLMs can consistently outperform the SotA when the target text is large.
Few-shot learning yields better performance than zero-shot learning.
arXiv Detail & Related papers (2023-10-12T17:17:27Z) - From Quantity to Quality: Boosting LLM Performance with Self-Guided Data Selection for Instruction Tuning [52.257422715393574]
We introduce a self-guided methodology for Large Language Models (LLMs) to autonomously discern and select cherry samples from open-source datasets.
Our key innovation, the Instruction-Following Difficulty (IFD) metric, emerges as a pivotal metric to identify discrepancies between a model's expected responses and its intrinsic generation capability.
arXiv Detail & Related papers (2023-08-23T09:45:29Z) - AnnoLLM: Making Large Language Models to Be Better Crowdsourced Annotators [98.11286353828525]
GPT-3.5 series models have demonstrated remarkable few-shot and zero-shot ability across various NLP tasks.
We propose AnnoLLM, which adopts a two-step approach, explain-then-annotate.
We build the first conversation-based information retrieval dataset employing AnnoLLM.
arXiv Detail & Related papers (2023-03-29T17:03:21Z) - ICL-D3IE: In-Context Learning with Diverse Demonstrations Updating for
Document Information Extraction [56.790794611002106]
Large language models (LLMs) have demonstrated remarkable results in various natural language processing (NLP) tasks with in-context learning.
We propose a simple but effective in-context learning framework called ICL-D3IE.
Specifically, we extract the most difficult and distinct segments from hard training documents as hard demonstrations.
arXiv Detail & Related papers (2023-03-09T06:24:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.