論文の概要: Machine-learning-based multipoint optimization of fluidic injection parameters for improving nozzle performance
- arxiv url: http://arxiv.org/abs/2409.12707v1
- Date: Thu, 19 Sep 2024 12:32:54 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-07 13:45:42.610955
- Title: Machine-learning-based multipoint optimization of fluidic injection parameters for improving nozzle performance
- Title(参考訳): 機械学習に基づくノズル性能向上のための流体注入パラメータの多点最適化
- Authors: Yunjia Yang, Jiazhe Li, Yufei Zhang, Haixin Chen,
- Abstract要約: 本稿では,計算流体力学(CFD)シミュレーションの代替として,事前学習ニューラルネットワークモデルを用いる。
ノズル流れ場の物理的特性を考慮すると, モデルの伝達性を高めるために, 先行予測手法が採用された。
推力係数1.14%の改善を実現し、従来の最適化手法と比較して時間コストを大幅に削減する。
- 参考スコア(独自算出の注目度): 2.5864426808687893
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Fluidic injection provides a promising solution to improve the performance of overexpanded single expansion ramp nozzle (SERN) during vehicle acceleration. However, determining the injection parameters for the best overall performance under multiple nozzle operating conditions is still a challenge. The gradient-based optimization method requires gradients of injection parameters at each design point, leading to high computational costs if traditional computational fluid dynamic (CFD) simulations are adopted. This paper uses a pretrained neural network model to replace CFD during optimization to quickly calculate the nozzle flow field at multiple design points. Considering the physical characteristics of the nozzle flow field, a prior-based prediction strategy is adopted to enhance the model's transferability. In addition, the back-propagation algorithm of the neural network is adopted to quickly evaluate the gradients by calling the computation process only once, thereby greatly reducing the gradient computation time compared to the finite differential method. As a test case, the average nozzle thrust coefficient of a SERN at seven design points is optimized. An improvement in the thrust coefficient of 1.14% is achieved, and the time cost is greatly reduced compared with the traditional optimization methods, even when the time to establish the database for training is considered.
- Abstract(参考訳): 流体注入は、車両加速時の過膨張単一膨張ランプノズル(SERN)の性能向上に有望なソリューションを提供する。
しかし, ノズル運転条件下では, 噴射パラメータを決定することは依然として困難である。
勾配に基づく最適化法では各設計点における注入パラメータの勾配を必要とするため、従来の計算流体力学(CFD)シミュレーションを採用すると高い計算コストがかかる。
本稿では,複数の設計点におけるノズル流れ場を高速に計算するために,事前学習型ニューラルネットワークモデルを用いて最適化中のCFDを置き換える。
ノズル流れ場の物理的特性を考慮すると, モデルの伝達性を高めるために, 先行予測手法が採用された。
さらに、ニューラルネットワークのバックプロパゲーションアルゴリズムを採用し、計算処理を1回だけ呼び出して勾配を迅速に評価し、有限微分法と比較して勾配計算時間を劇的に短縮する。
試験ケースでは、7つの設計点におけるSERNの平均ノズル推力係数を最適化する。
1.14%の推力係数の改善が達成され、トレーニング用データベースの確立時期を考慮した場合であっても、従来の最適化手法と比較して時間コストが大幅に削減される。
関連論文リスト
- Diffusion Generative Inverse Design [28.04683283070957]
逆設計(英: inverse design)とは、目的関数の入力を最適化し、目的の結果を導出する問題を指す。
学習グラフニューラルネットワーク(GNN)の最近の進歩は、シミュレーション力学の正確で効率的で微分可能な推定に利用することができる。
本稿では, 分散拡散モデルを用いて, 逆設計問題の解法を効率的に行う方法を示し, より効率的な粒子サンプリングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-09-05T08:32:07Z) - Deep neural operators can serve as accurate surrogates for shape
optimization: A case study for airfoils [3.2996060586026354]
本研究では, 形状最適化を目的とし, 未確認翼まわりの流れ場を推定するためにDeepONetsを用いることを検討した。
本稿では,オンライン最適化コストを桁違いに削減しつつ,予測精度の劣化が少ない結果を示す。
論文 参考訳(メタデータ) (2023-02-02T00:19:09Z) - Towards Theoretically Inspired Neural Initialization Optimization [66.04735385415427]
我々は,ニューラルネットワークの初期状態を評価するための理論的知見を備えた,GradCosineという微分可能な量を提案する。
標準制約下でGradCosineを最大化することにより、ネットワークのトレーニングとテストの両方の性能を向上させることができることを示す。
サンプル分析から実際のバッチ設定に一般化されたNIOは、無視可能なコストで、より優れた初期化を自動で探すことができる。
論文 参考訳(メタデータ) (2022-10-12T06:49:16Z) - Adan: Adaptive Nesterov Momentum Algorithm for Faster Optimizing Deep
Models [158.19276683455254]
アダプティブ勾配アルゴリズムは、重ボール加速の移動平均アイデアを借用し、勾配の第1次モーメントを正確に推定し、収束を加速する。
ネステロフ加速は、理論上はボール加速よりも早く収束し、多くの経験的ケースでも収束する。
本稿では,計算勾配の余分な計算とメモリオーバーヘッドを回避するため,Nesterov運動量推定法(NME)を提案する。
Adan は視覚変換器 (ViT と CNN) で対応する SoTA を上回り,多くの人気ネットワークに対して新たな SoTA を設定する。
論文 参考訳(メタデータ) (2022-08-13T16:04:39Z) - Data-driven evolutionary algorithm for oil reservoir well-placement and
control optimization [3.012067935276772]
一般化されたデータ駆動進化アルゴリズム(GDDE)は、適切な配置と制御最適化問題で実行されるシミュレーションの数を減らすために提案される。
確率的ニューラルネットワーク(PNN)は、情報的および有望な候補を選択するための分類器として採用されている。
論文 参考訳(メタデータ) (2022-06-07T09:07:49Z) - Joint inference and input optimization in equilibrium networks [68.63726855991052]
ディープ均衡モデル(Deep equilibrium model)は、従来のネットワークの深さを予測し、代わりに単一の非線形層の固定点を見つけることによってネットワークの出力を計算するモデルのクラスである。
この2つの設定の間には自然なシナジーがあることが示されています。
この戦略は、生成モデルのトレーニングや、潜時符号の最適化、デノベートやインペインティングといった逆問題に対するトレーニングモデル、対逆トレーニング、勾配に基づくメタラーニングなど、様々なタスクにおいて実証される。
論文 参考訳(メタデータ) (2021-11-25T19:59:33Z) - Differentiable Agent-Based Simulation for Gradient-Guided
Simulation-Based Optimization [0.0]
勾配推定法は局所最適化に向けて最適化を行うのに利用できる。
高入力次元の信号タイミング最適化問題では、勾配に基づく手法の方がかなり優れた性能を示す。
論文 参考訳(メタデータ) (2021-03-23T11:58:21Z) - An AI-Assisted Design Method for Topology Optimization Without
Pre-Optimized Training Data [68.8204255655161]
トポロジ最適化に基づくAI支援設計手法を提示し、最適化された設計を直接的に得ることができる。
設計は、境界条件と入力データとしての充填度に基づいて、人工ニューラルネットワーク、予測器によって提供される。
論文 参考訳(メタデータ) (2020-12-11T14:33:27Z) - Enhanced data efficiency using deep neural networks and Gaussian
processes for aerodynamic design optimization [0.0]
随伴型最適化法は空気力学的形状設計において魅力的である。
複数の最適化問題が解決されている場合、それらは違法に高価になる可能性がある。
本稿では,高コストな随伴解法に取って代わる機械学習を実現するサロゲートベースのフレームワークを提案する。
論文 参考訳(メタデータ) (2020-08-15T15:09:21Z) - A Primer on Zeroth-Order Optimization in Signal Processing and Machine
Learning [95.85269649177336]
ZO最適化は、勾配推定、降下方向、ソリューション更新の3つの主要なステップを反復的に実行する。
我々は,ブラックボックス深層学習モデルによる説明文の評価や生成,効率的なオンラインセンサ管理など,ZO最適化の有望な応用を実証する。
論文 参考訳(メタデータ) (2020-06-11T06:50:35Z) - Extrapolation for Large-batch Training in Deep Learning [72.61259487233214]
我々は、バリエーションのホストが、我々が提案する統一されたフレームワークでカバー可能であることを示す。
本稿では,この手法の収束性を証明し,ResNet,LSTM,Transformer上での経験的性能を厳格に評価する。
論文 参考訳(メタデータ) (2020-06-10T08:22:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。