論文の概要: When SparseMoE Meets Noisy Interactions: An Ensemble View on Denoising Recommendation
- arxiv url: http://arxiv.org/abs/2409.12730v2
- Date: Sat, 21 Dec 2024 10:29:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-24 15:52:21.099982
- Title: When SparseMoE Meets Noisy Interactions: An Ensemble View on Denoising Recommendation
- Title(参考訳): SparseMoEが騒々しい相互作用に出会ったとき--勧告のデノベーションに関するアンサンブル・ビュー
- Authors: Weipu Chen, Zhuangzhuang He, Fei Liu,
- Abstract要約: 本稿では,適応アンサンブル学習(Adaptive Ensemble Learning, AEL)を提案する。
AELはスパースゲーティングネットワークを脳として採用し、適切な認知能力の合成に適した専門家を選択する。
モデル複雑性のアンサンブル学習の欠点を解決するために,コンポーネントを積み重ねてサブレコメンダを作成する新しい手法を提案する。
- 参考スコア(独自算出の注目度): 3.050721435894337
- License:
- Abstract: Learning user preferences from implicit feedback is one of the core challenges in recommendation. The difficulty lies in the potential noise within implicit feedback. Therefore, various denoising recommendation methods have been proposed recently. However, most of them overly rely on the hyperparameter configurations, inevitably leading to inadequacies in model adaptability and generalization performance. In this study, we propose a novel Adaptive Ensemble Learning (AEL) for denoising recommendation, which employs a sparse gating network as a brain, selecting suitable experts to synthesize appropriate denoising capacities for different data samples. To address the ensemble learning shortcoming of model complexity and ensure sub-recommender diversity, we also proposed a novel method that stacks components to create sub-recommenders instead of directly constructing them. Extensive experiments across various datasets demonstrate that AEL outperforms others in kinds of popular metrics, even in the presence of substantial and dynamic noise. Our code is available at https://github.com/cpu9xx/AEL.
- Abstract(参考訳): 暗黙のフィードバックからユーザの好みを学ぶことは、推奨の中心的な課題のひとつです。
その難しさは、暗黙のフィードバックの中の潜在的なノイズにある。
そのため,近年,様々な推薦手法が提案されている。
しかし、それらのほとんどが過度にハイパーパラメータの構成に依存しており、必然的にモデル適応性や一般化性能の欠如につながっている。
そこで本研究では, スパースゲーティングネットワークを脳として用い, 異なるデータサンプルに対する適切な認知能力の合成に適した専門家を選択する, 適応アンサンブル学習(AEL)を提案する。
モデル複雑性のアンサンブル学習の欠点に対処し,サブレコメンダの多様性を確保するために,コンポーネントを積み重ねてサブレコメンダを作成する手法も提案した。
様々なデータセットにわたる大規模な実験により、ALEは、実質的でダイナミックなノイズの存在下であっても、一般的なメトリクスの種類で他よりも優れていることが示される。
私たちのコードはhttps://github.com/cpu9xx/AELで公開されています。
関連論文リスト
- Large Language Model Enhanced Hard Sample Identification for Denoising Recommendation [4.297249011611168]
暗黙のフィードバックは、しばしばレコメンデーションシステムを構築するために使われる。
従来の研究では、分散したパターンに基づいてノイズの多いサンプルを識別することで、これを緩和しようと試みてきた。
大規模言語モデル強化型ハードサンプルデノゲーションフレームワークを提案する。
論文 参考訳(メタデータ) (2024-09-16T14:57:09Z) - Denoising Pre-Training and Customized Prompt Learning for Efficient Multi-Behavior Sequential Recommendation [69.60321475454843]
マルチビヘイビアシークエンシャルレコメンデーションに適した,最初の事前学習および迅速な学習パラダイムであるDPCPLを提案する。
事前学習段階において,複数の時間スケールでノイズを除去する新しい行動マイナ (EBM) を提案する。
次に,提案するCustomized Prompt Learning (CPL)モジュールを用いて,事前学習したモデルを高効率にチューニングすることを提案する。
論文 参考訳(メタデータ) (2024-08-21T06:48:38Z) - Robust Learning under Hybrid Noise [24.36707245704713]
本稿では,データリカバリの観点からハイブリッドノイズに対処するため,新たな統合学習フレームワーク"Feature and Label Recovery"(FLR)を提案する。
論文 参考訳(メタデータ) (2024-07-04T16:13:25Z) - TruthSR: Trustworthy Sequential Recommender Systems via User-generated Multimodal Content [21.90660366765994]
ノイズの多いユーザ生成マルチモーダルコンテンツによる信頼性の高いシーケンシャルレコメンデーション手法を提案する。
具体的には、ノイズ干渉を軽減するために、ユーザ生成したマルチモーダルコンテンツの一貫性と相補性を捉える。
さらに,主観的ユーザ視点と客観的項目視点を統合した信頼性の高い意思決定機構を設計する。
論文 参考訳(メタデータ) (2024-04-26T08:23:36Z) - Multi-Level Sequence Denoising with Cross-Signal Contrastive Learning for Sequential Recommendation [13.355017204983973]
シーケンシャル・レコメンダ・システム(SRS)は,ユーザの過去のインタラクション・シーケンスに基づいて,次の項目を提案することを目的としている。
本稿では,MSDCCL(Multi-level Sequence Denoising with Cross-signal Contrastive Learning)という新しいモデルを提案する。
論文 参考訳(メタデータ) (2024-04-22T04:57:33Z) - ROPO: Robust Preference Optimization for Large Language Models [59.10763211091664]
外部モデルの助けを借りずにノイズ耐性とノイズサンプルのフィルタリングを統合する反復アライメント手法を提案する。
Mistral-7BとLlama-2-7Bで広く使われている3つのデータセットの実験では、ROPOが既存の嗜好アライメント法を大幅に上回っていることが示されている。
論文 参考訳(メタデータ) (2024-04-05T13:58:51Z) - An Adaptive Cost-Sensitive Learning and Recursive Denoising Framework for Imbalanced SVM Classification [12.986535715303331]
カテゴリー不均衡は、分類分野において最も人気があり重要な問題の一つである。
不均衡データセットに基づいてトレーニングされた感情分類モデルは、容易に信頼性の低い予測につながる。
論文 参考訳(メタデータ) (2024-03-13T09:43:14Z) - DASA: Difficulty-Aware Semantic Augmentation for Speaker Verification [55.306583814017046]
本稿では,話者認証のための難易度認識型セマンティック拡張(DASA)手法を提案する。
DASAは、話者埋め込み空間における多様なトレーニングサンプルを、無視できる余分な計算コストで生成する。
最も良い結果は、CN-Celeb評価セット上でのEER測定値の14.6%の相対的な減少を達成する。
論文 参考訳(メタデータ) (2023-10-18T17:07:05Z) - DeNoising-MOT: Towards Multiple Object Tracking with Severe Occlusions [52.63323657077447]
DNMOTは、複数のオブジェクト追跡のためのエンドツーエンドのトレーニング可能なDeNoising Transformerである。
具体的には、トレーニング中にノイズを伴って軌道を拡大し、エンコーダ・デコーダアーキテクチャのデノイング過程をモデルに学習させる。
我々はMOT17,MOT20,DanceTrackのデータセットについて広範な実験を行い,実験結果から,提案手法が従来の最先端手法よりも明確なマージンで優れていることが示された。
論文 参考訳(メタデータ) (2023-09-09T04:40:01Z) - Conditional Denoising Diffusion for Sequential Recommendation [62.127862728308045]
GAN(Generative Adversarial Networks)とVAE(VAE)の2つの顕著な生成モデル
GANは不安定な最適化に苦しむ一方、VAEは後続の崩壊と過度に平らな世代である。
本稿では,シーケンスエンコーダ,クロスアテンティブデノナイジングデコーダ,ステップワイズディフューザを含む条件付きデノナイジング拡散モデルを提案する。
論文 参考訳(メタデータ) (2023-04-22T15:32:59Z) - Probabilistic and Variational Recommendation Denoising [56.879165033014026]
暗黙のフィードバックから学ぶことは、推奨システムの適用において最も一般的なケースの1つである。
本稿では,暗黙のフィードバックに対する確率的・変動的推薦を提案する。
提案したDPIとDVAEを4つの最先端レコメンデーションモデルに適用し、3つのデータセットで実験を行う。
論文 参考訳(メタデータ) (2021-05-20T08:59:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。