TEAM PILOT -- Learned Feasible Extendable Set of Dynamic MRI Acquisition Trajectories
- URL: http://arxiv.org/abs/2409.12777v1
- Date: Thu, 19 Sep 2024 13:45:13 GMT
- Title: TEAM PILOT -- Learned Feasible Extendable Set of Dynamic MRI Acquisition Trajectories
- Authors: Tamir Shor, Chaim Baskin, Alex Bronstein,
- Abstract summary: We introduce a novel deep-compressed sensing approach that uses 3D window attention and flexible, temporally extendable acquisition trajectories.
Our method significantly reduces both training and inference times compared to existing approaches.
Tests with real data show that our approach outperforms current state-of-theart techniques.
- Score: 2.7719338074999547
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Dynamic Magnetic Resonance Imaging (MRI) is a crucial non-invasive method used to capture the movement of internal organs and tissues, making it a key tool for medical diagnosis. However, dynamic MRI faces a major challenge: long acquisition times needed to achieve high spatial and temporal resolution. This leads to higher costs, patient discomfort, motion artifacts, and lower image quality. Compressed Sensing (CS) addresses this problem by acquiring a reduced amount of MR data in the Fourier domain, based on a chosen sampling pattern, and reconstructing the full image from this partial data. While various deep learning methods have been developed to optimize these sampling patterns and improve reconstruction, they often struggle with slow optimization and inference times or are limited to specific temporal dimensions used during training. In this work, we introduce a novel deep-compressed sensing approach that uses 3D window attention and flexible, temporally extendable acquisition trajectories. Our method significantly reduces both training and inference times compared to existing approaches, while also adapting to different temporal dimensions during inference without requiring additional training. Tests with real data show that our approach outperforms current state-of-theart techniques. The code for reproducing all experiments will be made available upon acceptance of the paper.
Related papers
- A Unified Model for Compressed Sensing MRI Across Undersampling Patterns [69.19631302047569]
Deep neural networks have shown great potential for reconstructing high-fidelity images from undersampled measurements.
Our model is based on neural operators, a discretization-agnostic architecture.
Our inference speed is also 1,400x faster than diffusion methods.
arXiv Detail & Related papers (2024-10-05T20:03:57Z) - Deep Separable Spatiotemporal Learning for Fast Dynamic Cardiac MRI [22.7085949508143]
MRI plays an indispensable role in cardiac diagnosis. To enable fast imaging, the k-space data can be undersampled.
This challenge necessitates extensive training data in deep learning reconstruction methods.
We propose a novel and efficient approach, leveraging a dimension separable learning scheme that can perform exceptionally well even with highly limited training data.
arXiv Detail & Related papers (2024-02-24T23:56:15Z) - Volumetric Reconstruction Resolves Off-Resonance Artifacts in Static and
Dynamic PROPELLER MRI [76.60362295758596]
Off-resonance artifacts in magnetic resonance imaging (MRI) are visual distortions that occur when the actual resonant frequencies of spins within the imaging volume differ from the expected frequencies used to encode spatial information.
We propose to resolve these artifacts by lifting the 2D MRI reconstruction problem to 3D, introducing an additional "spectral" dimension to model this off-resonance.
arXiv Detail & Related papers (2023-11-22T05:44:51Z) - On Sensitivity and Robustness of Normalization Schemes to Input
Distribution Shifts in Automatic MR Image Diagnosis [58.634791552376235]
Deep Learning (DL) models have achieved state-of-the-art performance in diagnosing multiple diseases using reconstructed images as input.
DL models are sensitive to varying artifacts as it leads to changes in the input data distribution between the training and testing phases.
We propose to use other normalization techniques, such as Group Normalization and Layer Normalization, to inject robustness into model performance against varying image artifacts.
arXiv Detail & Related papers (2023-06-23T03:09:03Z) - Multi PILOT: Learned Feasible Multiple Acquisition Trajectories for
Dynamic MRI [0.7843343739054056]
In this study, we consider acquisition learning in the dynamic imaging setting.
We design an end-to-end pipeline for the joint optimization of multiple per-frame acquisition trajectories.
We demonstrate improved image reconstruction quality in shorter acquisition times.
arXiv Detail & Related papers (2023-03-13T14:23:39Z) - Data and Physics Driven Learning Models for Fast MRI -- Fundamentals and
Methodologies from CNN, GAN to Attention and Transformers [72.047680167969]
This article aims to introduce the deep learning based data driven techniques for fast MRI including convolutional neural network and generative adversarial network based methods.
We will detail the research in coupling physics and data driven models for MRI acceleration.
Finally, we will demonstrate through a few clinical applications, explain the importance of data harmonisation and explainable models for such fast MRI techniques in multicentre and multi-scanner studies.
arXiv Detail & Related papers (2022-04-01T22:48:08Z) - DDoS-UNet: Incorporating temporal information using Dynamic Dual-channel
UNet for enhancing super-resolution of dynamic MRI [0.27998963147546135]
Magnetic resonance imaging (MRI) provides high spatial resolution and excellent soft-tissue contrast without using harmful ionising radiation.
MRI with high temporal resolution suffers from limited spatial resolution.
Deep learning based super-resolution approaches have been proposed to mitigate this trade-off.
This research addresses the problem by creating a deep learning model which attempts to learn both spatial and temporal relationships.
arXiv Detail & Related papers (2022-02-10T22:20:58Z) - STRESS: Super-Resolution for Dynamic Fetal MRI using Self-Supervised
Learning [2.5581619987137048]
We propose STRESS, a self-supervised super-resolution framework for dynamic fetal MRI with interleaved slice acquisitions.
Our proposed method simulates an interleaved slice acquisition along the high-resolution axis on the originally acquired data to generate pairs of low- and high-resolution images.
Evaluations on both simulated and in utero data show that our proposed method outperforms other self-supervised super-resolution methods.
arXiv Detail & Related papers (2021-06-23T13:52:11Z) - ShuffleUNet: Super resolution of diffusion-weighted MRIs using deep
learning [47.68307909984442]
Single Image Super-Resolution (SISR) is a technique aimed to obtain high-resolution (HR) details from one single low-resolution input image.
Deep learning extracts prior knowledge from big datasets and produces superior MRI images from the low-resolution counterparts.
arXiv Detail & Related papers (2021-02-25T14:52:23Z) - A Novel Approach for Correcting Multiple Discrete Rigid In-Plane Motions
Artefacts in MRI Scans [63.28835187934139]
We propose a novel method for removing motion artefacts using a deep neural network with two input branches.
The proposed method can be applied to artefacts generated by multiple movements of the patient.
arXiv Detail & Related papers (2020-06-24T15:25:11Z) - Deep Residual Dense U-Net for Resolution Enhancement in Accelerated MRI
Acquisition [19.422926534305837]
We propose a deep-learning approach, aiming at reconstructing high-quality images from accelerated MRI acquisition.
Specifically, we use Convolutional Neural Network (CNN) to learn the differences between the aliased images and the original images.
Considering the peculiarity of the down-sampled k-space data, we introduce a new term to the loss function in learning, which effectively employs the given k-space data.
arXiv Detail & Related papers (2020-01-13T19:01:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.