Multi PILOT: Learned Feasible Multiple Acquisition Trajectories for
Dynamic MRI
- URL: http://arxiv.org/abs/2303.07150v2
- Date: Thu, 23 Mar 2023 12:49:39 GMT
- Title: Multi PILOT: Learned Feasible Multiple Acquisition Trajectories for
Dynamic MRI
- Authors: Tamir Shor, Tomer Weiss, Dor Noti, Alex Bronstein
- Abstract summary: In this study, we consider acquisition learning in the dynamic imaging setting.
We design an end-to-end pipeline for the joint optimization of multiple per-frame acquisition trajectories.
We demonstrate improved image reconstruction quality in shorter acquisition times.
- Score: 0.7843343739054056
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Dynamic Magnetic Resonance Imaging (MRI) is known to be a powerful and
reliable technique for the dynamic imaging of internal organs and tissues,
making it a leading diagnostic tool. A major difficulty in using MRI in this
setting is the relatively long acquisition time (and, hence, increased cost)
required for imaging in high spatio-temporal resolution, leading to the
appearance of related motion artifacts and decrease in resolution. Compressed
Sensing (CS) techniques have become a common tool to reduce MRI acquisition
time by subsampling images in the k-space according to some acquisition
trajectory. Several studies have particularly focused on applying deep learning
techniques to learn these acquisition trajectories in order to attain better
image reconstruction, rather than using some predefined set of trajectories. To
the best of our knowledge, learning acquisition trajectories has been only
explored in the context of static MRI. In this study, we consider acquisition
trajectory learning in the dynamic imaging setting. We design an end-to-end
pipeline for the joint optimization of multiple per-frame acquisition
trajectories along with a reconstruction neural network, and demonstrate
improved image reconstruction quality in shorter acquisition times. The code
for reproducing all experiments is accessible at
https://github.com/tamirshor7/MultiPILOT.
Related papers
- Continuous K-space Recovery Network with Image Guidance for Fast MRI Reconstruction [5.910509015352437]
Fast MRI reconstruction aims to restore high-quality images from the undersampled k-space.
Existing methods typically train deep learning models to map the undersampled data to artifact-free MRI images.
We propose a continuous k-space recovery network from a new perspective of implicit neural representation with image domain guidance.
arXiv Detail & Related papers (2024-11-18T04:54:04Z) - A Unified Model for Compressed Sensing MRI Across Undersampling Patterns [69.19631302047569]
Deep neural networks have shown great potential for reconstructing high-fidelity images from undersampled measurements.
Our model is based on neural operators, a discretization-agnostic architecture.
Our inference speed is also 1,400x faster than diffusion methods.
arXiv Detail & Related papers (2024-10-05T20:03:57Z) - TEAM PILOT -- Learned Feasible Extendable Set of Dynamic MRI Acquisition Trajectories [2.7719338074999547]
We introduce a novel deep-compressed sensing approach that uses 3D window attention and flexible, temporally extendable acquisition trajectories.
Our method significantly reduces both training and inference times compared to existing approaches.
Tests with real data show that our approach outperforms current state-of-theart techniques.
arXiv Detail & Related papers (2024-09-19T13:45:13Z) - CMRxRecon: An open cardiac MRI dataset for the competition of
accelerated image reconstruction [62.61209705638161]
There has been growing interest in deep learning-based CMR imaging algorithms.
Deep learning methods require large training datasets.
This dataset includes multi-contrast, multi-view, multi-slice and multi-coil CMR imaging data from 300 subjects.
arXiv Detail & Related papers (2023-09-19T15:14:42Z) - On Sensitivity and Robustness of Normalization Schemes to Input
Distribution Shifts in Automatic MR Image Diagnosis [58.634791552376235]
Deep Learning (DL) models have achieved state-of-the-art performance in diagnosing multiple diseases using reconstructed images as input.
DL models are sensitive to varying artifacts as it leads to changes in the input data distribution between the training and testing phases.
We propose to use other normalization techniques, such as Group Normalization and Layer Normalization, to inject robustness into model performance against varying image artifacts.
arXiv Detail & Related papers (2023-06-23T03:09:03Z) - ERNAS: An Evolutionary Neural Architecture Search for Magnetic Resonance
Image Reconstructions [0.688204255655161]
A popular approach to accelerated MRI is to undersample the k-space data.
While undersampling speeds up the scan procedure, it generates artifacts in the images, and advanced reconstruction algorithms are needed to produce artifact-free images.
In this work, MRI reconstruction from undersampled data was carried out using an optimized neural network using a novel evolutionary neural architecture search algorithm.
arXiv Detail & Related papers (2022-06-15T03:42:18Z) - Multi-modal Aggregation Network for Fast MR Imaging [85.25000133194762]
We propose a novel Multi-modal Aggregation Network, named MANet, which is capable of discovering complementary representations from a fully sampled auxiliary modality.
In our MANet, the representations from the fully sampled auxiliary and undersampled target modalities are learned independently through a specific network.
Our MANet follows a hybrid domain learning framework, which allows it to simultaneously recover the frequency signal in the $k$-space domain.
arXiv Detail & Related papers (2021-10-15T13:16:59Z) - Adaptive Gradient Balancing for UndersampledMRI Reconstruction and
Image-to-Image Translation [60.663499381212425]
We enhance the image quality by using a Wasserstein Generative Adversarial Network combined with a novel Adaptive Gradient Balancing technique.
In MRI, our method minimizes artifacts, while maintaining a high-quality reconstruction that produces sharper images than other techniques.
arXiv Detail & Related papers (2021-04-05T13:05:22Z) - ShuffleUNet: Super resolution of diffusion-weighted MRIs using deep
learning [47.68307909984442]
Single Image Super-Resolution (SISR) is a technique aimed to obtain high-resolution (HR) details from one single low-resolution input image.
Deep learning extracts prior knowledge from big datasets and produces superior MRI images from the low-resolution counterparts.
arXiv Detail & Related papers (2021-02-25T14:52:23Z) - Machine Learning in Magnetic Resonance Imaging: Image Reconstruction [1.6822770693792823]
There has been an explosion in the use of machine learning in the field of MRI image reconstruction.
We summarize the current machine learning approaches used in MRI reconstruction, discuss their drawbacks, clinical applications, and current trends.
arXiv Detail & Related papers (2020-12-09T20:38:20Z) - Deep Residual Dense U-Net for Resolution Enhancement in Accelerated MRI
Acquisition [19.422926534305837]
We propose a deep-learning approach, aiming at reconstructing high-quality images from accelerated MRI acquisition.
Specifically, we use Convolutional Neural Network (CNN) to learn the differences between the aliased images and the original images.
Considering the peculiarity of the down-sampled k-space data, we introduce a new term to the loss function in learning, which effectively employs the given k-space data.
arXiv Detail & Related papers (2020-01-13T19:01:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.