Improving Prototypical Parts Abstraction for Case-Based Reasoning Explanations Designed for the Kidney Stone Type Recognition
- URL: http://arxiv.org/abs/2409.12883v1
- Date: Thu, 19 Sep 2024 16:27:32 GMT
- Title: Improving Prototypical Parts Abstraction for Case-Based Reasoning Explanations Designed for the Kidney Stone Type Recognition
- Authors: Daniel Flores-Araiza, Francisco Lopez-Tiro, Clément Larose, Salvador Hinojosa, Andres Mendez-Vazquez, Miguel Gonzalez-Mendoza, Gilberto Ochoa-Ruiz, Christian Daul,
- Abstract summary: The in-vivo identification of the kidney stone types during an ureteroscopy would be a major medical advance in urology.
Several deep learning (DL) models have recently been proposed to automatically recognize the kidney stone types using ureteroscopic images.
This contribution proposes a case-based reasoning DL model which uses prototypical parts (PPs) and generates local and global descriptors.
- Score: 2.5506430540951763
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The in-vivo identification of the kidney stone types during an ureteroscopy would be a major medical advance in urology, as it could reduce the time of the tedious renal calculi extraction process, while diminishing infection risks. Furthermore, such an automated procedure would make possible to prescribe anti-recurrence treatments immediately. Nowadays, only few experienced urologists are able to recognize the kidney stone types in the images of the videos displayed on a screen during the endoscopy. Thus, several deep learning (DL) models have recently been proposed to automatically recognize the kidney stone types using ureteroscopic images. However, these DL models are of black box nature whicl limits their applicability in clinical settings. This contribution proposes a case-based reasoning DL model which uses prototypical parts (PPs) and generates local and global descriptors. The PPs encode for each class (i.e., kidney stone type) visual feature information (hue, saturation, intensity and textures) similar to that used by biologists. The PPs are optimally generated due a new loss function used during the model training. Moreover, the local and global descriptors of PPs allow to explain the decisions ("what" information, "where in the images") in an understandable way for biologists and urologists. The proposed DL model has been tested on a database including images of the six most widespread kidney stone types. The overall average classification accuracy was 90.37. When comparing this results with that of the eight other DL models of the kidney stone state-of-the-art, it can be seen that the valuable gain in explanability was not reached at the expense of accuracy which was even slightly increased with respect to that (88.2) of the best method of the literature. These promising and interpretable results also encourage urologists to put their trust in AI-based solutions.
Related papers
- Deep Prototypical-Parts Ease Morphological Kidney Stone Identification
and are Competitively Robust to Photometric Perturbations [0.9236074230806579]
We learn Prototypical Parts (PPs) per kidney stone subtype to generate an output classification.
Our implementation's average accuracy is lower than state-of-the-art (SOTA) non-interpretable DL models by 1.5 %.
Our models perform 2.8% better on perturbed images with a lower standard deviation, without adversarial training.
arXiv Detail & Related papers (2023-04-08T17:43:31Z) - Patched Diffusion Models for Unsupervised Anomaly Detection in Brain MRI [55.78588835407174]
We propose a method that reformulates the generation task of diffusion models as a patch-based estimation of healthy brain anatomy.
We evaluate our approach on data of tumors and multiple sclerosis lesions and demonstrate a relative improvement of 25.1% compared to existing baselines.
arXiv Detail & Related papers (2023-03-07T09:40:22Z) - Boosting Kidney Stone Identification in Endoscopic Images Using Two-Step
Transfer Learning [0.8431877864777444]
The proposed approach transfers knowledge learned on a set of images of kidney stones acquired with a CCD camera to a final model that classifies images from endoscopic images.
The results show that learning features from different domains with similar information helps to improve the performance of a model that performs classification in real conditions.
arXiv Detail & Related papers (2022-10-24T23:22:22Z) - Interpretable Deep Learning Classifier by Detection of Prototypical
Parts on Kidney Stones Images [0.9236074230806579]
Currently, the associated ex-vivo diagnosis (known as morpho-constitutional analysis, MCA) is time-consuming, expensive, and requires a great deal of experience.
Machine learning methods have been developed for in-vivo endoscopic stone recognition.
Our proposal suggests a classification for a kidney stone patch image and provides explanations in a similar way as those used on the MCA method.
arXiv Detail & Related papers (2022-06-01T06:32:31Z) - StRegA: Unsupervised Anomaly Detection in Brain MRIs using a Compact
Context-encoding Variational Autoencoder [48.2010192865749]
Unsupervised anomaly detection (UAD) can learn a data distribution from an unlabelled dataset of healthy subjects and then be applied to detect out of distribution samples.
This research proposes a compact version of the "context-encoding" VAE (ceVAE) model, combined with pre and post-processing steps, creating a UAD pipeline (StRegA)
The proposed pipeline achieved a Dice score of 0.642$pm$0.101 while detecting tumours in T2w images of the BraTS dataset and 0.859$pm$0.112 while detecting artificially induced anomalies.
arXiv Detail & Related papers (2022-01-31T14:27:35Z) - On the in vivo recognition of kidney stones using machine learning [1.6273083168563973]
This paper compares the kidney stone recognition performances of six shallow machine learning methods and three deep-learning architectures.
It is also shown that choosing an appropriate colour space and texture features allows a shallow machine learning method to approach closely the performances of the most promising deep-learning methods.
arXiv Detail & Related papers (2022-01-21T19:18:42Z) - Assessing glaucoma in retinal fundus photographs using Deep Feature
Consistent Variational Autoencoders [63.391402501241195]
glaucoma is challenging to detect since it remains asymptomatic until the symptoms are severe.
Early identification of glaucoma is generally made based on functional, structural, and clinical assessments.
Deep learning methods have partially solved this dilemma by bypassing the marker identification stage and analyzing high-level information directly to classify the data.
arXiv Detail & Related papers (2021-10-04T16:06:49Z) - Wide & Deep neural network model for patch aggregation in CNN-based
prostate cancer detection systems [51.19354417900591]
Prostate cancer (PCa) is one of the leading causes of death among men, with almost 1.41 million new cases and around 375,000 deaths in 2020.
To perform an automatic diagnosis, prostate tissue samples are first digitized into gigapixel-resolution whole-slide images.
Small subimages called patches are extracted and predicted, obtaining a patch-level classification.
arXiv Detail & Related papers (2021-05-20T18:13:58Z) - Variational Knowledge Distillation for Disease Classification in Chest
X-Rays [102.04931207504173]
We propose itvariational knowledge distillation (VKD), which is a new probabilistic inference framework for disease classification based on X-rays.
We demonstrate the effectiveness of our method on three public benchmark datasets with paired X-ray images and EHRs.
arXiv Detail & Related papers (2021-03-19T14:13:56Z) - Assessing deep learning methods for the identification of kidney stones
in endoscopic images [0.0]
Knowing the type (i.e., the biochemical composition) of kidney stones is crucial to prevent relapses.
During ureteroscopies, kidney stones are fragmented, extracted from the urinary tract, and their composition is determined using a morpho-constitutional analysis.
This paper discusses and compares five classification methods including deep convolutional neural networks (DCNN)-based approaches and traditional (non DCNN-based) ones.
arXiv Detail & Related papers (2021-03-01T17:31:01Z) - An interpretable classifier for high-resolution breast cancer screening
images utilizing weakly supervised localization [45.00998416720726]
We propose a framework to address the unique properties of medical images.
This model first uses a low-capacity, yet memory-efficient, network on the whole image to identify the most informative regions.
It then applies another higher-capacity network to collect details from chosen regions.
Finally, it employs a fusion module that aggregates global and local information to make a final prediction.
arXiv Detail & Related papers (2020-02-13T15:28:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.