3DGS-LM: Faster Gaussian-Splatting Optimization with Levenberg-Marquardt
- URL: http://arxiv.org/abs/2409.12892v1
- Date: Thu, 19 Sep 2024 16:31:44 GMT
- Title: 3DGS-LM: Faster Gaussian-Splatting Optimization with Levenberg-Marquardt
- Authors: Lukas Höllein, Aljaž Božič, Michael Zollhöfer, Matthias Nießner,
- Abstract summary: We present 3DGS-LM, a new method that accelerates the reconstruction of 3D Gaussian Splatting (3DGS)
Our method is 30% faster than the original 3DGS while obtaining the same reconstruction quality optimization.
- Score: 65.25603275491544
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present 3DGS-LM, a new method that accelerates the reconstruction of 3D Gaussian Splatting (3DGS) by replacing its ADAM optimizer with a tailored Levenberg-Marquardt (LM). Existing methods reduce the optimization time by decreasing the number of Gaussians or by improving the implementation of the differentiable rasterizer. However, they still rely on the ADAM optimizer to fit Gaussian parameters of a scene in thousands of iterations, which can take up to an hour. To this end, we change the optimizer to LM that runs in conjunction with the 3DGS differentiable rasterizer. For efficient GPU parallization, we propose a caching data structure for intermediate gradients that allows us to efficiently calculate Jacobian-vector products in custom CUDA kernels. In every LM iteration, we calculate update directions from multiple image subsets using these kernels and combine them in a weighted mean. Overall, our method is 30% faster than the original 3DGS while obtaining the same reconstruction quality. Our optimization is also agnostic to other methods that acclerate 3DGS, thus enabling even faster speedups compared to vanilla 3DGS.
Related papers
- FlashSplat: 2D to 3D Gaussian Splatting Segmentation Solved Optimally [66.28517576128381]
This study addresses the challenge of accurately segmenting 3D Gaussian Splatting from 2D masks.
We propose a straightforward yet globally optimal solver for 3D-GS segmentation.
Our method completes within 30 seconds, about 50$times$ faster than the best existing methods.
arXiv Detail & Related papers (2024-09-12T17:58:13Z) - LP-3DGS: Learning to Prune 3D Gaussian Splatting [71.97762528812187]
We propose learning-to-prune 3DGS, where a trainable binary mask is applied to the importance score that can find optimal pruning ratio automatically.
Experiments have shown that LP-3DGS consistently produces a good balance that is both efficient and high quality.
arXiv Detail & Related papers (2024-05-29T05:58:34Z) - MicroDreamer: Efficient 3D Generation in $\sim$20 Seconds by Score-based Iterative Reconstruction [37.07128043394227]
This paper introduces score-based iterative reconstruction (SIR), an efficient and general algorithm mimicking a differentiable 3D reconstruction process to reduce the NFEs.
We present an efficient approach called MicroDreamer that generally applies to various 3D representations and 3D generation tasks.
arXiv Detail & Related papers (2024-04-30T12:56:14Z) - GaussianPro: 3D Gaussian Splatting with Progressive Propagation [49.918797726059545]
3DGS relies heavily on the point cloud produced by Structure-from-Motion (SfM) techniques.
We propose a novel method that applies a progressive propagation strategy to guide the densification of the 3D Gaussians.
Our method significantly surpasses 3DGS on the dataset, exhibiting an improvement of 1.15dB in terms of PSNR.
arXiv Detail & Related papers (2024-02-22T16:00:20Z) - GPS-Gaussian: Generalizable Pixel-wise 3D Gaussian Splatting for Real-time Human Novel View Synthesis [70.24111297192057]
We present a new approach, termed GPS-Gaussian, for synthesizing novel views of a character in a real-time manner.
The proposed method enables 2K-resolution rendering under a sparse-view camera setting.
arXiv Detail & Related papers (2023-12-04T18:59:55Z) - GS-SLAM: Dense Visual SLAM with 3D Gaussian Splatting [51.96353586773191]
We introduce textbfGS-SLAM that first utilizes 3D Gaussian representation in the Simultaneous Localization and Mapping system.
Our method utilizes a real-time differentiable splatting rendering pipeline that offers significant speedup to map optimization and RGB-D rendering.
Our method achieves competitive performance compared with existing state-of-the-art real-time methods on the Replica, TUM-RGBD datasets.
arXiv Detail & Related papers (2023-11-20T12:08:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.