MaskMol: Knowledge-guided Molecular Image Pre-Training Framework for Activity Cliffs
- URL: http://arxiv.org/abs/2409.12926v1
- Date: Mon, 2 Sep 2024 03:03:22 GMT
- Title: MaskMol: Knowledge-guided Molecular Image Pre-Training Framework for Activity Cliffs
- Authors: Zhixiang Cheng, Hongxin Xiang, Pengsen Ma, Li Zeng, Xin Jin, Xixi Yang, Jianxin Lin, Yang Deng, Bosheng Song, Xinxin Feng, Changhui Deng, Xiangxiang Zeng,
- Abstract summary: MaskMol is a knowledge-guided molecular image self-supervised learning framework.
MaskMol accurately learns the representation of molecular images by considering multiple levels of molecular knowledge.
Results demonstrate MaskMol's high accuracy and transferability in activity cliff estimation and compound potency prediction.
- Score: 18.901322124389218
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Activity cliffs, which refer to pairs of molecules that are structurally similar but show significant differences in their potency, can lead to model representation collapse and make the model challenging to distinguish them. Our research indicates that as molecular similarity increases, graph-based methods struggle to capture these nuances, whereas image-based approaches effectively retain the distinctions. Thus, we developed MaskMol, a knowledge-guided molecular image self-supervised learning framework. MaskMol accurately learns the representation of molecular images by considering multiple levels of molecular knowledge, such as atoms, bonds, and substructures. By utilizing pixel masking tasks, MaskMol extracts fine-grained information from molecular images, overcoming the limitations of existing deep learning models in identifying subtle structural changes. Experimental results demonstrate MaskMol's high accuracy and transferability in activity cliff estimation and compound potency prediction across 20 different macromolecular targets, outperforming 25 state-of-the-art deep learning and machine learning approaches. Visualization analyses reveal MaskMol's high biological interpretability in identifying activity cliff-relevant molecular substructures. Notably, through MaskMol, we identified candidate EP4 inhibitors that could be used to treat tumors. This study not only raises awareness about activity cliffs but also introduces a novel method for molecular image representation learning and virtual screening, advancing drug discovery and providing new insights into structure-activity relationships (SAR).
Related papers
- FARM: Functional Group-Aware Representations for Small Molecules [55.281754551202326]
We introduce Functional Group-Aware Representations for Small Molecules (FARM)
FARM is a foundation model designed to bridge the gap between SMILES, natural language, and molecular graphs.
We rigorously evaluate FARM on the MoleculeNet dataset, where it achieves state-of-the-art performance on 10 out of 12 tasks.
arXiv Detail & Related papers (2024-10-02T23:04:58Z) - Learning Multi-view Molecular Representations with Structured and Unstructured Knowledge [14.08112359246334]
We present MV-Mol, a representation learning model that harvests multi-view molecular expertise from chemical structures, unstructured knowledge from biomedical texts, and structured knowledge from knowledge graphs.
We show that MV-Mol provides improved representations that substantially benefit molecular property prediction.
arXiv Detail & Related papers (2024-06-14T08:48:10Z) - Data-Efficient Molecular Generation with Hierarchical Textual Inversion [48.816943690420224]
We introduce Hierarchical textual Inversion for Molecular generation (HI-Mol), a novel data-efficient molecular generation method.
HI-Mol is inspired by the importance of hierarchical information, e.g., both coarse- and fine-grained features, in understanding the molecule distribution.
Compared to the conventional textual inversion method in the image domain using a single-level token embedding, our multi-level token embeddings allow the model to effectively learn the underlying low-shot molecule distribution.
arXiv Detail & Related papers (2024-05-05T08:35:23Z) - Contrastive Dual-Interaction Graph Neural Network for Molecular Property Prediction [0.0]
We introduce DIG-Mol, a novel self-supervised graph neural network framework for molecular property prediction.
DIG-Mol integrates a momentum distillation network with two interconnected networks to efficiently improve molecular characterization.
We have established DIG-Mol's state-of-the-art performance through extensive experimental evaluation in a variety of molecular property prediction tasks.
arXiv Detail & Related papers (2024-05-04T10:09:27Z) - MultiModal-Learning for Predicting Molecular Properties: A Framework Based on Image and Graph Structures [2.5563339057415218]
MolIG is a novel MultiModaL molecular pre-training framework for predicting molecular properties based on Image and Graph structures.
It amalgamates the strengths of both molecular representation forms.
It exhibits enhanced performance in downstream tasks pertaining to molecular property prediction within benchmark groups.
arXiv Detail & Related papers (2023-11-28T10:28:35Z) - MolCAP: Molecular Chemical reActivity pretraining and
prompted-finetuning enhanced molecular representation learning [3.179128580341411]
MolCAP is a graph pretraining Transformer based on chemical reactivity (IMR) knowledge with prompted finetuning.
Prompted by MolCAP, even basic graph neural networks are capable of achieving surprising performance that outperforms previous models.
arXiv Detail & Related papers (2023-06-13T13:48:06Z) - Bi-level Contrastive Learning for Knowledge-Enhanced Molecule
Representations [55.42602325017405]
We propose a novel method called GODE, which takes into account the two-level structure of individual molecules.
By pre-training two graph neural networks (GNNs) on different graph structures, combined with contrastive learning, GODE fuses molecular structures with their corresponding knowledge graph substructures.
When fine-tuned across 11 chemical property tasks, our model outperforms existing benchmarks, registering an average ROC-AUC uplift of 13.8% for classification tasks and an average RMSE/MAE enhancement of 35.1% for regression tasks.
arXiv Detail & Related papers (2023-06-02T15:49:45Z) - Atomic and Subgraph-aware Bilateral Aggregation for Molecular
Representation Learning [57.670845619155195]
We introduce a new model for molecular representation learning called the Atomic and Subgraph-aware Bilateral Aggregation (ASBA)
ASBA addresses the limitations of previous atom-wise and subgraph-wise models by incorporating both types of information.
Our method offers a more comprehensive way to learn representations for molecular property prediction and has broad potential in drug and material discovery applications.
arXiv Detail & Related papers (2023-05-22T00:56:00Z) - A Molecular Multimodal Foundation Model Associating Molecule Graphs with
Natural Language [63.60376252491507]
We propose a molecular multimodal foundation model which is pretrained from molecular graphs and their semantically related textual data.
We believe that our model would have a broad impact on AI-empowered fields across disciplines such as biology, chemistry, materials, environment, and medicine.
arXiv Detail & Related papers (2022-09-12T00:56:57Z) - Attention-wise masked graph contrastive learning for predicting
molecular property [15.387677968070912]
We proposed a self-supervised representation learning framework for large-scale unlabeled molecules.
We developed a novel molecular graph augmentation strategy, referred to as attention-wise graph mask.
Our model can capture important molecular structure and higher-order semantic information.
arXiv Detail & Related papers (2022-05-02T00:28:02Z) - ASGN: An Active Semi-supervised Graph Neural Network for Molecular
Property Prediction [61.33144688400446]
We propose a novel framework called Active Semi-supervised Graph Neural Network (ASGN) by incorporating both labeled and unlabeled molecules.
In the teacher model, we propose a novel semi-supervised learning method to learn general representation that jointly exploits information from molecular structure and molecular distribution.
At last, we proposed a novel active learning strategy in terms of molecular diversities to select informative data during the whole framework learning.
arXiv Detail & Related papers (2020-07-07T04:22:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.