ASGN: An Active Semi-supervised Graph Neural Network for Molecular
Property Prediction
- URL: http://arxiv.org/abs/2007.03196v1
- Date: Tue, 7 Jul 2020 04:22:39 GMT
- Title: ASGN: An Active Semi-supervised Graph Neural Network for Molecular
Property Prediction
- Authors: Zhongkai Hao, Chengqiang Lu, Zheyuan Hu, Hao Wang, Zhenya Huang, Qi
Liu, Enhong Chen, Cheekong Lee
- Abstract summary: We propose a novel framework called Active Semi-supervised Graph Neural Network (ASGN) by incorporating both labeled and unlabeled molecules.
In the teacher model, we propose a novel semi-supervised learning method to learn general representation that jointly exploits information from molecular structure and molecular distribution.
At last, we proposed a novel active learning strategy in terms of molecular diversities to select informative data during the whole framework learning.
- Score: 61.33144688400446
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Molecular property prediction (e.g., energy) is an essential problem in
chemistry and biology. Unfortunately, many supervised learning methods usually
suffer from the problem of scarce labeled molecules in the chemical space,
where such property labels are generally obtained by Density Functional Theory
(DFT) calculation which is extremely computational costly. An effective
solution is to incorporate the unlabeled molecules in a semi-supervised
fashion. However, learning semi-supervised representation for large amounts of
molecules is challenging, including the joint representation issue of both
molecular essence and structure, the conflict between representation and
property leaning. Here we propose a novel framework called Active
Semi-supervised Graph Neural Network (ASGN) by incorporating both labeled and
unlabeled molecules. Specifically, ASGN adopts a teacher-student framework. In
the teacher model, we propose a novel semi-supervised learning method to learn
general representation that jointly exploits information from molecular
structure and molecular distribution. Then in the student model, we target at
property prediction task to deal with the learning loss conflict. At last, we
proposed a novel active learning strategy in terms of molecular diversities to
select informative data during the whole framework learning. We conduct
extensive experiments on several public datasets. Experimental results show the
remarkable performance of our ASGN framework.
Related papers
- Multi-Modal Representation Learning for Molecular Property Prediction:
Sequence, Graph, Geometry [6.049566024728809]
Deep learning-based molecular property prediction has emerged as a solution to the resource-intensive nature of traditional methods.
In this paper, we propose a novel multi-modal representation learning model, called SGGRL, for molecular property prediction.
To ensure consistency across modalities, SGGRL is trained to maximize the similarity of representations for the same molecule while minimizing similarity for different molecules.
arXiv Detail & Related papers (2024-01-07T02:18:00Z) - Bi-level Contrastive Learning for Knowledge-Enhanced Molecule
Representations [55.42602325017405]
We propose a novel method called GODE, which takes into account the two-level structure of individual molecules.
By pre-training two graph neural networks (GNNs) on different graph structures, combined with contrastive learning, GODE fuses molecular structures with their corresponding knowledge graph substructures.
When fine-tuned across 11 chemical property tasks, our model outperforms existing benchmarks, registering an average ROC-AUC uplift of 13.8% for classification tasks and an average RMSE/MAE enhancement of 35.1% for regression tasks.
arXiv Detail & Related papers (2023-06-02T15:49:45Z) - Atomic and Subgraph-aware Bilateral Aggregation for Molecular
Representation Learning [57.670845619155195]
We introduce a new model for molecular representation learning called the Atomic and Subgraph-aware Bilateral Aggregation (ASBA)
ASBA addresses the limitations of previous atom-wise and subgraph-wise models by incorporating both types of information.
Our method offers a more comprehensive way to learn representations for molecular property prediction and has broad potential in drug and material discovery applications.
arXiv Detail & Related papers (2023-05-22T00:56:00Z) - Graph neural networks for the prediction of molecular structure-property
relationships [59.11160990637615]
Graph neural networks (GNNs) are a novel machine learning method that directly work on the molecular graph.
GNNs allow to learn properties in an end-to-end fashion, thereby avoiding the need for informative descriptors.
We describe the fundamentals of GNNs and demonstrate the application of GNNs via two examples for molecular property prediction.
arXiv Detail & Related papers (2022-07-25T11:30:44Z) - Chemical-Reaction-Aware Molecule Representation Learning [88.79052749877334]
We propose using chemical reactions to assist learning molecule representation.
Our approach is proven effective to 1) keep the embedding space well-organized and 2) improve the generalization ability of molecule embeddings.
Experimental results demonstrate that our method achieves state-of-the-art performance in a variety of downstream tasks.
arXiv Detail & Related papers (2021-09-21T00:08:43Z) - MolCLR: Molecular Contrastive Learning of Representations via Graph
Neural Networks [11.994553575596228]
MolCLR is a self-supervised learning framework for large unlabeled molecule datasets.
We propose three novel molecule graph augmentations: atom masking, bond deletion, and subgraph removal.
Our method achieves state-of-the-art performance on many challenging datasets.
arXiv Detail & Related papers (2021-02-19T17:35:18Z) - Few-Shot Graph Learning for Molecular Property Prediction [46.60746023179724]
We propose Meta-MGNN, a novel model for few-shot molecular property prediction.
To exploit unlabeled molecular information, Meta-MGNN further incorporates molecular structure, attribute based self-supervised modules and self-attentive task weights.
Extensive experiments on two public multi-property datasets demonstrate that Meta-MGNN outperforms a variety of state-of-the-art methods.
arXiv Detail & Related papers (2021-02-16T01:55:34Z) - Self-Supervised Graph Transformer on Large-Scale Molecular Data [73.3448373618865]
We propose a novel framework, GROVER, for molecular representation learning.
GROVER can learn rich structural and semantic information of molecules from enormous unlabelled molecular data.
We pre-train GROVER with 100 million parameters on 10 million unlabelled molecules -- the biggest GNN and the largest training dataset in molecular representation learning.
arXiv Detail & Related papers (2020-06-18T08:37:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.