LogicPro: Improving Complex Logical Reasoning via Program-Guided Learning
- URL: http://arxiv.org/abs/2409.12929v1
- Date: Thu, 19 Sep 2024 17:30:45 GMT
- Title: LogicPro: Improving Complex Logical Reasoning via Program-Guided Learning
- Authors: Jin Jiang, Yuchen Yan, Yang Liu, Yonggang Jin, Shuai Peng, Mengdi Zhang, Xunliang Cai, Yixin Cao, Liangcai Gao, Zhi Tang,
- Abstract summary: We present a novel approach, called LogicPro, to enhance Large Language Models (LLMs) complex Logical reasoning through Program Examples.
We do this effectively by simply utilizing widely available algorithmic problems and their code solutions.
Our approach achieves significant improvements in multiple models for the BBH$27$, GSM8K, HellSwag, Logicqa, Reclor, and RTE datasets.
- Score: 23.987059076950622
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we present a novel approach, called LogicPro, to enhance Large Language Models (LLMs) complex Logical reasoning through Program Examples. We do this effectively by simply utilizing widely available algorithmic problems and their code solutions. First, we constructed diverse test samples input based on algorithmic questions and code solutions. Then, we designed different complex reasoning questions based on algorithmic problems and test samples. Finally, combining the intermediate variable outputs of the code solutions and the complex reasoning questions, we derived the reasoning process and the final answer. With this approach, we can construct a dataset that is sufficiently difficult (all models are ineffective), diverse (synthesized from 2,360 different algorithmic questions), and scalable (building different test samples and collecting more algorithmic questions). In addition, we obtain a high-quality reasoning process guided by the values of intermediate variables. As a result, our approach achieves significant improvements in multiple models for the BBH$^{27}$, GSM8K, HellSwag, Logicqa, Reclor, and RTE datasets, outperforming a wide range of existing reasoning datasets.
Related papers
- Improving Complex Reasoning over Knowledge Graph with Logic-Aware Curriculum Tuning [89.89857766491475]
We propose a complex reasoning schema over KG upon large language models (LLMs)
We augment the arbitrary first-order logical queries via binary tree decomposition to stimulate the reasoning capability of LLMs.
Experiments across widely used datasets demonstrate that LACT has substantial improvements(brings an average +5.5% MRR score) over advanced methods.
arXiv Detail & Related papers (2024-05-02T18:12:08Z) - Distilling Algorithmic Reasoning from LLMs via Explaining Solution Programs [2.3020018305241337]
Distilling explicit chain-of-thought reasoning paths has emerged as an effective method for improving the reasoning abilities of large language models.
We propose a novel approach to distill reasoning abilities from LLMs by leveraging their capacity to explain solutions.
Our experiments demonstrate that learning from explanations enables the Reasoner to more effectively guide program implementation by a Coder.
arXiv Detail & Related papers (2024-04-11T22:19:50Z) - Language Models as Compilers: Simulating Pseudocode Execution Improves Algorithmic Reasoning in Language Models [17.76252625790628]
This paper presents Think-and-Execute, a framework that decomposes the reasoning process of language models into two steps.
With extensive experiments on seven algorithmic reasoning tasks, we demonstrate the effectiveness of Think-and-Execute.
arXiv Detail & Related papers (2024-04-03T08:49:11Z) - When Do Program-of-Thoughts Work for Reasoning? [51.2699797837818]
We propose complexity-impacted reasoning score (CIRS) to measure correlation between code and reasoning abilities.
Specifically, we use the abstract syntax tree to encode the structural information and calculate logical complexity.
Code will be integrated into the EasyInstruct framework at https://github.com/zjunlp/EasyInstruct.
arXiv Detail & Related papers (2023-08-29T17:22:39Z) - Recursion of Thought: A Divide-and-Conquer Approach to Multi-Context
Reasoning with Language Models [58.41943058963672]
We propose a new inference framework called Recursion of Thought (RoT)
RoT introduces several special tokens that the models can output to trigger context-related operations.
Experiments with multiple architectures including GPT-3 show that RoT dramatically improves LMs' inference capability to solve problems.
arXiv Detail & Related papers (2023-06-12T06:34:16Z) - Evaluating and Improving Tool-Augmented Computation-Intensive Math
Reasoning [75.74103236299477]
Chain-of-thought prompting(CoT) and tool augmentation have been validated as effective practices for improving large language models.
We propose a new approach that can deliberate the reasoning steps with tool interfaces, namely textbfDELI.
Experimental results on CARP and six other datasets show that the proposed DELI mostly outperforms competitive baselines.
arXiv Detail & Related papers (2023-06-04T17:02:59Z) - Successive Prompting for Decomposing Complex Questions [50.00659445976735]
Recent works leverage the capabilities of large language models (LMs) to perform complex question answering in a few-shot setting.
We introduce Successive Prompting'', where we iteratively break down a complex task into a simple task, solve it, and then repeat the process until we get the final solution.
Our best model (with successive prompting) achieves an improvement of 5% absolute F1 on a few-shot version of the DROP dataset.
arXiv Detail & Related papers (2022-12-08T06:03:38Z) - Complexity-Based Prompting for Multi-Step Reasoning [72.0057198610614]
We study the task of prompting large-scale language models to perform multi-step reasoning.
A central question is which reasoning examples make the most effective prompts.
We propose complexity-based prompting, a simple and effective example selection scheme for multi-step reasoning.
arXiv Detail & Related papers (2022-10-03T05:33:27Z) - Encoding trade-offs and design toolkits in quantum algorithms for
discrete optimization: coloring, routing, scheduling, and other problems [0.0]
We present an intuitive method for synthesizing and analyzing discrete (i.e., integer-based) optimization problems.
This method is expressed using a discrete quantum intermediate representation (DQIR) that is encoding-independent.
Second, we perform numerical studies comparing several runtime encodings.
Third, we design low-depth graph-derived partial mixers (GDPMs) up to 16-level quantum variables.
arXiv Detail & Related papers (2022-03-28T01:01:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.