LogicPro: Improving Complex Logical Reasoning via Program-Guided Learning
- URL: http://arxiv.org/abs/2409.12929v2
- Date: Mon, 17 Feb 2025 11:49:57 GMT
- Title: LogicPro: Improving Complex Logical Reasoning via Program-Guided Learning
- Authors: Jin Jiang, Yuchen Yan, Yang Liu, Yonggang Jin, Shuai Peng, Mengdi Zhang, Xunliang Cai, Yixin Cao, Liangcai Gao, Zhi Tang,
- Abstract summary: We propose a new data synthesis method called textbfLogicPro, which synthesizes complex underlineLogical Reasoning data in text format.<n>We synthesize data that is difficult, scalable, effective, and comes with golden standard answers and high-quality reasoning processes.<n>Our approach achieves significant improvements in multiple models for the datasets textitBBH$27$, textitLogicBench, textitDROP, textitAR-LSAT, and textitGSM8K
- Score: 23.987059076950622
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we propose a new data synthesis method called \textbf{LogicPro}, which leverages LeetCode-style algorithm \underline{Pro}blems and their corresponding \underline{Pro}gram solutions to synthesize Complex \underline{Logic}al Reasoning data in text format. First, we synthesize complex reasoning problems through source algorithm problems and test cases. Then, standard answers and intermediate variable outputs are obtained for each problem based on standard python solutions and test cases. Finally, with the guidance of code intermediate variables, we synthesize the text reasoning process for each reasoning problems. Through this method, we can synthesize data that is difficult, scalable, effective, and comes with golden standard answers and high-quality reasoning processes. As a result, with our 540K synthesized dataset constructed solely from 2,360 algorithm problems, our approach Code and data are publicly available at https://github.com/jiangjin1999/LogicPro achieves significant improvements in multiple models for the datasets \textit{BBH$^{27}$}, \textit{LogicBench}, \textit{DROP}, \textit{AR-LSAT}, and \textit{GSM8K}, etc. outperforming a wide range of existing reasoning datasets.
Related papers
- RV-Syn: Rational and Verifiable Mathematical Reasoning Data Synthesis based on Structured Function Library [58.404895570822184]
RV-Syn is a novel mathematical Synthesis approach.
It generates graphs as solutions by combining Python-formatted functions from this library.
Based on the constructed graph, we achieve solution-guided logic-aware problem generation.
arXiv Detail & Related papers (2025-04-29T04:42:02Z) - Syzygy of Thoughts: Improving LLM CoT with the Minimal Free Resolution [59.39066657300045]
Chain-of-Thought (CoT) prompting enhances the reasoning of large language models (LLMs) by decomposing problems into sequential steps.
We propose Syzygy of Thoughts (SoT)-a novel framework that extends CoT by introducing auxiliary, interrelated reasoning paths.
SoT captures deeper logical dependencies, enabling more robust and structured problem-solving.
arXiv Detail & Related papers (2025-04-13T13:35:41Z) - KodCode: A Diverse, Challenging, and Verifiable Synthetic Dataset for Coding [49.56049319037421]
KodCode is a synthetic dataset that addresses the persistent challenge of acquiring high-quality, verifiable training data.
It comprises question-solution-test triplets that are systematically validated via a self-verification procedure.
This pipeline yields a large-scale, robust and diverse coding dataset.
arXiv Detail & Related papers (2025-03-04T19:17:36Z) - Training Language Models on Synthetic Edit Sequences Improves Code Synthesis [33.13471417703669]
Language models (LMs) autorely synthesize programs in a single pass.
While high-quality instruction data for code synthesis is scarce, edit data for synthesis is even scarcer.
We develop a synthetic data generation algorithm called LintSeq to fill this gap.
arXiv Detail & Related papers (2024-10-03T17:57:22Z) - An encoding of argumentation problems using quadratic unconstrained binary optimization [1.104960878651584]
We develop a way to encode several NP-Complete problems in Abstract Argumentation to Quadratic Unconstrained Binary Optimization problems.
With the QUBO formulation, exploiting new computing architectures, such as Quantum and Digital Annealers, is possible.
We performed tests to prove the correctness and applicability of classical problems in Argumentation and enforcement of argument sets.
arXiv Detail & Related papers (2024-09-09T11:29:46Z) - OptiBench Meets ReSocratic: Measure and Improve LLMs for Optimization Modeling [62.19438812624467]
Large language models (LLMs) have exhibited their problem-solving abilities in mathematical reasoning.
We propose OptiBench, a benchmark for End-to-end optimization problem-solving with human-readable inputs and outputs.
arXiv Detail & Related papers (2024-07-13T13:27:57Z) - SynthesizRR: Generating Diverse Datasets with Retrieval Augmentation [55.2480439325792]
We study the synthesis of six datasets, covering topic classification, sentiment analysis, tone detection, and humor.
We find that SynthesizRR greatly improves lexical and semantic diversity, similarity to human-written text, and distillation performance.
arXiv Detail & Related papers (2024-05-16T12:22:41Z) - Improving Complex Reasoning over Knowledge Graph with Logic-Aware Curriculum Tuning [89.89857766491475]
We propose a complex reasoning schema over KG upon large language models (LLMs)
We augment the arbitrary first-order logical queries via binary tree decomposition to stimulate the reasoning capability of LLMs.
Experiments across widely used datasets demonstrate that LACT has substantial improvements(brings an average +5.5% MRR score) over advanced methods.
arXiv Detail & Related papers (2024-05-02T18:12:08Z) - Distilling Algorithmic Reasoning from LLMs via Explaining Solution Programs [2.3020018305241337]
Distilling explicit chain-of-thought reasoning paths has emerged as an effective method for improving the reasoning abilities of large language models.
We propose a novel approach to distill reasoning abilities from LLMs by leveraging their capacity to explain solutions.
Our experiments demonstrate that learning from explanations enables the Reasoner to more effectively guide program implementation by a Coder.
arXiv Detail & Related papers (2024-04-11T22:19:50Z) - Language Models as Compilers: Simulating Pseudocode Execution Improves Algorithmic Reasoning in Language Models [17.76252625790628]
This paper presents Think-and-Execute, a framework that decomposes the reasoning process of language models into two steps.
With extensive experiments on seven algorithmic reasoning tasks, we demonstrate the effectiveness of Think-and-Execute.
arXiv Detail & Related papers (2024-04-03T08:49:11Z) - When Do Program-of-Thoughts Work for Reasoning? [51.2699797837818]
We propose complexity-impacted reasoning score (CIRS) to measure correlation between code and reasoning abilities.
Specifically, we use the abstract syntax tree to encode the structural information and calculate logical complexity.
Code will be integrated into the EasyInstruct framework at https://github.com/zjunlp/EasyInstruct.
arXiv Detail & Related papers (2023-08-29T17:22:39Z) - Information-Computation Tradeoffs for Learning Margin Halfspaces with
Random Classification Noise [50.64137465792738]
We study the problem of PAC $gamma$-margin halfspaces with Random Classification Noise.
We establish an information-computation tradeoff suggesting an inherent gap between the sample complexity of the problem and the sample complexity of computationally efficient algorithms.
arXiv Detail & Related papers (2023-06-28T16:33:39Z) - Recursion of Thought: A Divide-and-Conquer Approach to Multi-Context
Reasoning with Language Models [58.41943058963672]
We propose a new inference framework called Recursion of Thought (RoT)
RoT introduces several special tokens that the models can output to trigger context-related operations.
Experiments with multiple architectures including GPT-3 show that RoT dramatically improves LMs' inference capability to solve problems.
arXiv Detail & Related papers (2023-06-12T06:34:16Z) - Evaluating and Improving Tool-Augmented Computation-Intensive Math
Reasoning [75.74103236299477]
Chain-of-thought prompting(CoT) and tool augmentation have been validated as effective practices for improving large language models.
We propose a new approach that can deliberate the reasoning steps with tool interfaces, namely textbfDELI.
Experimental results on CARP and six other datasets show that the proposed DELI mostly outperforms competitive baselines.
arXiv Detail & Related papers (2023-06-04T17:02:59Z) - Successive Prompting for Decomposing Complex Questions [50.00659445976735]
Recent works leverage the capabilities of large language models (LMs) to perform complex question answering in a few-shot setting.
We introduce Successive Prompting'', where we iteratively break down a complex task into a simple task, solve it, and then repeat the process until we get the final solution.
Our best model (with successive prompting) achieves an improvement of 5% absolute F1 on a few-shot version of the DROP dataset.
arXiv Detail & Related papers (2022-12-08T06:03:38Z) - Complexity-Based Prompting for Multi-Step Reasoning [72.0057198610614]
We study the task of prompting large-scale language models to perform multi-step reasoning.
A central question is which reasoning examples make the most effective prompts.
We propose complexity-based prompting, a simple and effective example selection scheme for multi-step reasoning.
arXiv Detail & Related papers (2022-10-03T05:33:27Z) - Encoding trade-offs and design toolkits in quantum algorithms for
discrete optimization: coloring, routing, scheduling, and other problems [0.0]
We present an intuitive method for synthesizing and analyzing discrete (i.e., integer-based) optimization problems.
This method is expressed using a discrete quantum intermediate representation (DQIR) that is encoding-independent.
Second, we perform numerical studies comparing several runtime encodings.
Third, we design low-depth graph-derived partial mixers (GDPMs) up to 16-level quantum variables.
arXiv Detail & Related papers (2022-03-28T01:01:12Z) - OpenABC-D: A Large-Scale Dataset For Machine Learning Guided Integrated
Circuit Synthesis [10.338357262730863]
OpenABC-D is a large-scale, labeled dataset produced by prototypical open source designs with a leading open-source logic synthesis tool.
We define a generic learning problem on this dataset and benchmark existing solutions.
arXiv Detail & Related papers (2021-10-21T17:19:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.