JourneyBench: A Challenging One-Stop Vision-Language Understanding Benchmark of Generated Images
- URL: http://arxiv.org/abs/2409.12953v4
- Date: Fri, 10 Jan 2025 02:31:03 GMT
- Title: JourneyBench: A Challenging One-Stop Vision-Language Understanding Benchmark of Generated Images
- Authors: Zhecan Wang, Junzhang Liu, Chia-Wei Tang, Hani Alomari, Anushka Sivakumar, Rui Sun, Wenhao Li, Md. Atabuzzaman, Hammad Ayyubi, Haoxuan You, Alvi Ishmam, Kai-Wei Chang, Shih-Fu Chang, Chris Thomas,
- Abstract summary: We release JourneyBench, a benchmark of generated images to assess the model's fine-grained multimodal reasoning abilities.
Unlike existing benchmarks, JourneyBench explicitly requires fine-grained multimodal reasoning in unusual imaginary scenarios.
Results across all five tasks show that JourneyBench is exceptionally challenging for even the best models.
- Score: 72.42826916932519
- License:
- Abstract: Existing vision-language understanding benchmarks largely consist of images of objects in their usual contexts. As a consequence, recent multimodal large language models can perform well with only a shallow visual understanding by relying on background language biases. Thus, strong performance on these benchmarks does not necessarily correlate with strong visual understanding. In this paper, we release JourneyBench, a comprehensive human-annotated benchmark of generated images designed to assess the model's fine-grained multimodal reasoning abilities across five tasks: complementary multimodal chain of thought, multi-image VQA, imaginary image captioning, VQA with hallucination triggers, and fine-grained retrieval with sample-specific distractors. Unlike existing benchmarks, JourneyBench explicitly requires fine-grained multimodal reasoning in unusual imaginary scenarios where language bias and holistic image gist are insufficient. We benchmark state-of-the-art models on JourneyBench and analyze performance along a number of fine-grained dimensions. Results across all five tasks show that JourneyBench is exceptionally challenging for even the best models, indicating that models' visual reasoning abilities are not as strong as they first appear. We discuss the implications of our findings and propose avenues for further research.
Related papers
- MET-Bench: Multimodal Entity Tracking for Evaluating the Limitations of Vision-Language and Reasoning Models [0.0]
We introduce MET-Bench, a benchmark designed to evaluate the ability of vision-language models to track entity states across modalities.
Our findings reveal a significant performance gap between text-based and image-based tracking and that this performance gap stems from deficits in visual reasoning rather than perception.
arXiv Detail & Related papers (2025-02-15T19:39:58Z) - DRIVINGVQA: Analyzing Visual Chain-of-Thought Reasoning of Vision Language Models in Real-World Scenarios with Driving Theory Tests [69.00444996464662]
We present DrivingVQA, a new benchmark derived from driving theory tests to evaluate visual chain-of-thought reasoning in complex real-world scenarios.
Our experiments reveal that open-source and proprietary LVLMs struggle with visual chain-of-thought reasoning under zero-shot settings.
We investigate training strategies that leverage relevant entities to improve visual reasoning.
arXiv Detail & Related papers (2025-01-08T18:31:16Z) - MageBench: Bridging Large Multimodal Models to Agents [90.59091431806793]
LMMs have shown impressive visual understanding capabilities, with the potential to be applied in agents.
Existing benchmarks mostly assess their reasoning abilities in language part.
MageBench is a reasoning capability oriented multimodal agent benchmark.
arXiv Detail & Related papers (2024-12-05T17:08:19Z) - Multimodal Causal Reasoning Benchmark: Challenging Vision Large Language Models to Infer Causal Links Between Siamese Images [19.923665989164387]
We propose a novel Multimodal Causal Reasoning benchmark, namely MuCR, to challenge Large Language Models.
Specifically, we introduce a prompt-driven image synthesis approach to create siamese images with embedded semantic causality and visual cues.
Our extensive experiments reveal that the current state-of-the-art VLLMs are not as skilled at multimodal causal reasoning as we might have hoped.
arXiv Detail & Related papers (2024-08-15T12:04:32Z) - Benchmarking Multi-Image Understanding in Vision and Language Models: Perception, Knowledge, Reasoning, and Multi-Hop Reasoning [15.296263261737026]
We introduce a Multi-Image MIRB Benchmark to evaluate visual language models' ability to compare, analyze, and reason across multiple images.
Our benchmark encompasses four categories: perception, visual world knowledge, reasoning, and multi-hop reasoning.
We demonstrate that while open-source VLMs were shown to approach the GPT-4V in single-image tasks, a significant gap remains in multi-image reasoning tasks.
arXiv Detail & Related papers (2024-06-18T16:02:18Z) - CODIS: Benchmarking Context-Dependent Visual Comprehension for Multimodal Large Language Models [58.95889895912716]
We introduce a new benchmark, named as CODIS, designed to assess the ability of models to use context provided in free-form text to enhance visual comprehension.
Our findings indicate that MLLMs consistently fall short of human performance on this benchmark.
This underscores the pressing need to enhance the ability of MLLMs to comprehend visuals in a context-dependent manner.
arXiv Detail & Related papers (2024-02-21T08:21:12Z) - ConTextual: Evaluating Context-Sensitive Text-Rich Visual Reasoning in Large Multimodal Models [92.60282074937305]
We introduce ConTextual, a novel dataset featuring human-crafted instructions that require context-sensitive reasoning for text-rich images.
We conduct experiments to assess the performance of 14 foundation models and establish a human performance baseline.
We observe a significant performance gap of 30.8% between GPT-4V and human performance.
arXiv Detail & Related papers (2024-01-24T09:07:11Z) - REBUS: A Robust Evaluation Benchmark of Understanding Symbols [1.90463290938268]
GPT-4o significantly outperforms all other models, followed by proprietary models outperforming all other evaluated models.
Even the best model has a final accuracy of only 42%, which goes down to just 7% on hard puzzles.
Our benchmark can therefore be used to identify major shortcomings in the knowledge and reasoning of multimodal large language models.
arXiv Detail & Related papers (2024-01-11T00:30:28Z) - Revisiting the Role of Language Priors in Vision-Language Models [90.0317841097143]
Vision-language models (VLMs) are applied to a variety of visual understanding tasks in a zero-shot fashion, without any fine-tuning.
We study $textitgenerative VLMs$ that are trained for next-word generation given an image.
We explore their zero-shot performance on the illustrative task of image-text retrieval across 8 popular vision-language benchmarks.
arXiv Detail & Related papers (2023-06-02T19:19:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.