GStex: Per-Primitive Texturing of 2D Gaussian Splatting for Decoupled Appearance and Geometry Modeling
- URL: http://arxiv.org/abs/2409.12954v1
- Date: Tue, 29 Oct 2024 18:31:39 GMT
- Title: GStex: Per-Primitive Texturing of 2D Gaussian Splatting for Decoupled Appearance and Geometry Modeling
- Authors: Victor Rong, Jingxiang Chen, Sherwin Bahmani, Kiriakos N. Kutulakos, David B. Lindell,
- Abstract summary: Gaussian splatting has demonstrated excellent performance for view synthesis and scene reconstruction.
Since each Gaussian primitive encodes both appearance and geometry, appearance modeling requires a number of Gaussian primitives.
We propose to employ perprimitive representation so that even a single Gaussian can be used to capture appearance details.
- Score: 11.91812502521729
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Gaussian splatting has demonstrated excellent performance for view synthesis and scene reconstruction. The representation achieves photorealistic quality by optimizing the position, scale, color, and opacity of thousands to millions of 2D or 3D Gaussian primitives within a scene. However, since each Gaussian primitive encodes both appearance and geometry, these attributes are strongly coupled--thus, high-fidelity appearance modeling requires a large number of Gaussian primitives, even when the scene geometry is simple (e.g., for a textured planar surface). We propose to texture each 2D Gaussian primitive so that even a single Gaussian can be used to capture appearance details. By employing per-primitive texturing, our appearance representation is agnostic to the topology and complexity of the scene's geometry. We show that our approach, GStex, yields improved visual quality over prior work in texturing Gaussian splats. Furthermore, we demonstrate that our decoupling enables improved novel view synthesis performance compared to 2D Gaussian splatting when reducing the number of Gaussian primitives, and that GStex can be used for scene appearance editing and re-texturing.
Related papers
- Sketch and Patch: Efficient 3D Gaussian Representation for Man-Made Scenes [3.9241077704550777]
3D Gaussian Splatting has emerged as a promising representation for rendering of 3D scenes.
We observe that Gaussians exhibit distinct roles and characteristics that are analogous to traditional artistic techniques.
We propose a novel hybrid representation that categorizes Gaussians into (i) Sketch Gaussians, which define scene boundaries, and (ii) Patch Gaussians, which cover smooth regions.
arXiv Detail & Related papers (2025-01-22T17:52:45Z) - Textured Gaussians for Enhanced 3D Scene Appearance Modeling [58.134905268540436]
3D Gaussian Splatting (3DGS) has emerged as a state-of-the-art 3D reconstruction and rendering technique.
We propose a new generalized Gaussian appearance representation that augments each Gaussian with alpha(A), RGB, or RGBA texture maps.
We demonstrate image quality improvements over existing methods while using a similar or lower number of Gaussians.
arXiv Detail & Related papers (2024-11-27T18:59:59Z) - Quadratic Gaussian Splatting for Efficient and Detailed Surface Reconstruction [7.500927135156425]
Quadratic Gaussian Splatting (QGS) is a novel method that replaces disks with quadric surfaces.
QGS renders spatial curvature to guide the normal consistency term, to effectively reduce over-smoothing.
Our code willbe released as open source.
arXiv Detail & Related papers (2024-11-25T13:55:00Z) - GPS-Gaussian+: Generalizable Pixel-wise 3D Gaussian Splatting for Real-Time Human-Scene Rendering from Sparse Views [67.34073368933814]
We propose a generalizable Gaussian Splatting approach for high-resolution image rendering under a sparse-view camera setting.
We train our Gaussian parameter regression module on human-only data or human-scene data, jointly with a depth estimation module to lift 2D parameter maps to 3D space.
Experiments on several datasets demonstrate that our method outperforms state-of-the-art methods while achieving an exceeding rendering speed.
arXiv Detail & Related papers (2024-11-18T08:18:44Z) - Structure Consistent Gaussian Splatting with Matching Prior for Few-shot Novel View Synthesis [28.3325478008559]
We propose SCGaussian, a Structure Consistent Gaussian Splatting method using matching priors to learn 3D consistent scene structure.
We optimize the scene structure in two folds: rendering geometry and, more importantly, the position of Gaussian primitives.
Experiments on forward-facing, surrounding, and complex large scenes show the effectiveness of our approach with state-of-the-art performance and high efficiency.
arXiv Detail & Related papers (2024-11-06T03:28:06Z) - DreamMesh4D: Video-to-4D Generation with Sparse-Controlled Gaussian-Mesh Hybrid Representation [10.250715657201363]
We introduce DreamMesh4D, a novel framework combining mesh representation with geometric skinning technique to generate high-quality 4D object from a monocular video.
Our method is compatible with modern graphic pipelines, showcasing its potential in the 3D gaming and film industry.
arXiv Detail & Related papers (2024-10-09T10:41:08Z) - HiSplat: Hierarchical 3D Gaussian Splatting for Generalizable Sparse-View Reconstruction [46.269350101349715]
HiSplat is a novel framework for generalizable 3D Gaussian Splatting.
It generates hierarchical 3D Gaussians via a coarse-to-fine strategy.
It significantly enhances reconstruction quality and cross-dataset generalization.
arXiv Detail & Related papers (2024-10-08T17:59:32Z) - Dynamic Gaussian Marbles for Novel View Synthesis of Casual Monocular Videos [58.22272760132996]
We show that existing 4D Gaussian methods dramatically fail in this setup because the monocular setting is underconstrained.
We propose Dynamic Gaussian Marbles, which consist of three core modifications that target the difficulties of the monocular setting.
We evaluate on the Nvidia Dynamic Scenes dataset and the DyCheck iPhone dataset, and show that Gaussian Marbles significantly outperforms other Gaussian baselines in quality.
arXiv Detail & Related papers (2024-06-26T19:37:07Z) - GaussianRoom: Improving 3D Gaussian Splatting with SDF Guidance and Monocular Cues for Indoor Scene Reconstruction [5.112375652774415]
We propose a unified optimization framework that integrates neural signed distance fields (SDFs) with 3DGS for accurate geometry reconstruction and real-time rendering.
Our method achieves state-of-the-art performance in both surface reconstruction and novel view synthesis.
arXiv Detail & Related papers (2024-05-30T03:46:59Z) - Gaussian Opacity Fields: Efficient Adaptive Surface Reconstruction in Unbounded Scenes [50.92217884840301]
Gaussian Opacity Fields (GOF) is a novel approach for efficient, high-quality, and adaptive surface reconstruction in scenes.
GOF is derived from ray-tracing-based volume rendering of 3D Gaussians.
GOF surpasses existing 3DGS-based methods in surface reconstruction and novel view synthesis.
arXiv Detail & Related papers (2024-04-16T17:57:19Z) - 2D Gaussian Splatting for Geometrically Accurate Radiance Fields [50.056790168812114]
3D Gaussian Splatting (3DGS) has recently revolutionized radiance field reconstruction, achieving high quality novel view synthesis and fast rendering speed without baking.
We present 2D Gaussian Splatting (2DGS), a novel approach to model and reconstruct geometrically accurate radiance fields from multi-view images.
We demonstrate that our differentiable terms allows for noise-free and detailed geometry reconstruction while maintaining competitive appearance quality, fast training speed, and real-time rendering.
arXiv Detail & Related papers (2024-03-26T17:21:24Z) - GVGEN: Text-to-3D Generation with Volumetric Representation [89.55687129165256]
3D Gaussian splatting has emerged as a powerful technique for 3D reconstruction and generation, known for its fast and high-quality rendering capabilities.
This paper introduces a novel diffusion-based framework, GVGEN, designed to efficiently generate 3D Gaussian representations from text input.
arXiv Detail & Related papers (2024-03-19T17:57:52Z) - Mesh-based Gaussian Splatting for Real-time Large-scale Deformation [58.18290393082119]
It is challenging for users to directly deform or manipulate implicit representations with large deformations in the real-time fashion.
We develop a novel GS-based method that enables interactive deformation.
Our approach achieves high-quality reconstruction and effective deformation, while maintaining the promising rendering results at a high frame rate.
arXiv Detail & Related papers (2024-02-07T12:36:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.