CLAIR-A: Leveraging Large Language Models to Judge Audio Captions
- URL: http://arxiv.org/abs/2409.12962v1
- Date: Thu, 19 Sep 2024 17:59:52 GMT
- Title: CLAIR-A: Leveraging Large Language Models to Judge Audio Captions
- Authors: Tsung-Han Wu, Joseph E. Gonzalez, Trevor Darrell, David M. Chan,
- Abstract summary: evaluating machine-generated audio captions is a complex task that requires considering diverse factors.
We propose CLAIR-A, a simple and flexible method that leverages the zero-shot capabilities of large language models.
In our evaluations, CLAIR-A better predicts human judgements of quality compared to traditional metrics.
- Score: 73.51087998971418
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The Automated Audio Captioning (AAC) task asks models to generate natural language descriptions of an audio input. Evaluating these machine-generated audio captions is a complex task that requires considering diverse factors, among them, auditory scene understanding, sound-object inference, temporal coherence, and the environmental context of the scene. While current methods focus on specific aspects, they often fail to provide an overall score that aligns well with human judgment. In this work, we propose CLAIR-A, a simple and flexible method that leverages the zero-shot capabilities of large language models (LLMs) to evaluate candidate audio captions by directly asking LLMs for a semantic distance score. In our evaluations, CLAIR-A better predicts human judgements of quality compared to traditional metrics, with a 5.8% relative accuracy improvement compared to the domain-specific FENSE metric and up to 11% over the best general-purpose measure on the Clotho-Eval dataset. Moreover, CLAIR-A offers more transparency by allowing the language model to explain the reasoning behind its scores, with these explanations rated up to 30% better by human evaluators than those provided by baseline methods. CLAIR-A is made publicly available at https://github.com/DavidMChan/clair-a.
Related papers
- Do Audio-Language Models Understand Linguistic Variations? [42.17718387132912]
Open-vocabulary audio language models (ALMs) represent a promising new paradigm for audio-text retrieval using natural language queries.
We propose RobustCLAP, a novel and compute-efficient technique to learn audio-language representations to linguistic variations.
arXiv Detail & Related papers (2024-10-21T20:55:33Z) - A Suite for Acoustic Language Model Evaluation [20.802090523583196]
We introduce SALMon, a novel evaluation suite encompassing background noise, emotion, speaker identity and room impulse response.
We evaluate several speech language models on SALMon, thus highlighting the strengths and weaknesses of each evaluated method.
arXiv Detail & Related papers (2024-09-11T17:34:52Z) - Enhancing Audio-Language Models through Self-Supervised Post-Training with Text-Audio Pairs [3.8300818830608345]
Multi-modal contrastive learning strategies for audio and text have rapidly gained interest.
The ability of these models to understand natural language and temporal relations is still a largely unexplored and open field for research.
We propose to equip the multi-modal ALMs with temporal understanding without loosing their inherent prior capabilities of audio-language tasks with a temporal instillation method TeminAL.
arXiv Detail & Related papers (2024-08-17T18:53:17Z) - Listenable Maps for Zero-Shot Audio Classifiers [12.446324804274628]
We introduce LMAC-Z (Listenable Maps for Audio) for the first time in the Zero-Shot context.
We show that our method produces meaningful explanations that correlate well with different text prompts.
arXiv Detail & Related papers (2024-05-27T19:25:42Z) - AIR-Bench: Benchmarking Large Audio-Language Models via Generative Comprehension [95.8442896569132]
We introduce AIR-Bench, the first benchmark to evaluate the ability of Large Audio-Language Models (LALMs) to understand various types of audio signals and interact with humans in the textual format.
Results demonstrate a high level of consistency between GPT-4-based evaluation and human evaluation.
arXiv Detail & Related papers (2024-02-12T15:41:22Z) - CLAIR: Evaluating Image Captions with Large Language Models [69.46906537973518]
We propose CLAIR, a novel method to evaluate machine-generated image captions.
In our evaluations, CLAIR demonstrates a stronger correlation with human judgments of caption quality compared to existing measures.
Clair provides noisily interpretable results by allowing the language model to identify the underlying reasoning behind its assigned score.
arXiv Detail & Related papers (2023-10-19T17:59:01Z) - Automatic Dialect Density Estimation for African American English [74.44807604000967]
We explore automatic prediction of dialect density of the African American English (AAE) dialect.
dialect density is defined as the percentage of words in an utterance that contain characteristics of the non-standard dialect.
We show a significant correlation between our predicted and ground truth dialect density measures for AAE speech in this database.
arXiv Detail & Related papers (2022-04-03T01:34:48Z) - LDNet: Unified Listener Dependent Modeling in MOS Prediction for
Synthetic Speech [67.88748572167309]
We present LDNet, a unified framework for mean opinion score (MOS) prediction.
We propose two inference methods that provide more stable results and efficient computation.
arXiv Detail & Related papers (2021-10-18T08:52:31Z) - Speaker-Conditioned Hierarchical Modeling for Automated Speech Scoring [60.55025339250815]
We propose a novel deep learning technique for non-native ASS, called speaker-conditioned hierarchical modeling.
We take advantage of the fact that oral proficiency tests rate multiple responses for a candidate. In our technique, we take advantage of the fact that oral proficiency tests rate multiple responses for a candidate. We extract context from these responses and feed them as additional speaker-specific context to our network to score a particular response.
arXiv Detail & Related papers (2021-08-30T07:00:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.