論文の概要: Semantic Meta-Split Learning: A TinyML Scheme for Few-Shot Wireless Image Classification
- arxiv url: http://arxiv.org/abs/2409.12978v1
- Date: Tue, 3 Sep 2024 05:56:55 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-07 12:25:44.189816
- Title: Semantic Meta-Split Learning: A TinyML Scheme for Few-Shot Wireless Image Classification
- Title(参考訳): Semantic Meta-Split Learning:Few-Shot Wireless Image ClassificationのためのTinyMLスキーム
- Authors: Eslam Eldeeb, Mohammad Shehab, Hirley Alves, Mohamed-Slim Alouini,
- Abstract要約: 本研究は,TinyMLを用いた無線画像分類のためのセマンティック・コミュニケーション・フレームワークを提案する。
我々は、プライバシ保護を確保しつつ、エンドユーザーによって実行される計算を制限するために分割学習を利用する。
メタ学習は、データ可用性の懸念を克服し、同様のトレーニングされたタスクを利用することで、トレーニングを高速化する。
- 参考スコア(独自算出の注目度): 50.28867343337997
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Semantic and goal-oriented (SGO) communication is an emerging technology that only transmits significant information for a given task. Semantic communication encounters many challenges, such as computational complexity at end users, availability of data, and privacy-preserving. This work presents a TinyML-based semantic communication framework for few-shot wireless image classification that integrates split-learning and meta-learning. We exploit split-learning to limit the computations performed by the end-users while ensuring privacy-preserving. In addition, meta-learning overcomes data availability concerns and speeds up training by utilizing similarly trained tasks. The proposed algorithm is tested using a data set of images of hand-written letters. In addition, we present an uncertainty analysis of the predictions using conformal prediction (CP) techniques. Simulation results show that the proposed Semantic-MSL outperforms conventional schemes by achieving 20 % gain on classification accuracy using fewer data points, yet less training energy consumption.
- Abstract(参考訳): セマンティック・ゴール指向通信(SGO)は、与えられたタスクに対してのみ重要な情報を伝達する新興技術である。
セマンティック通信は、エンドユーザの計算複雑性、データの可用性、プライバシ保護など、多くの課題に直面している。
本研究は,分割学習とメタ学習を統合した,数ショットの無線画像分類のためのTinyMLベースのセマンティックコミュニケーションフレームワークを提案する。
我々は、プライバシ保護を確保しつつ、エンドユーザーによって実行される計算を制限するために分割学習を利用する。
さらに、メタラーニングはデータ可用性の懸念を克服し、同様のトレーニングされたタスクを活用することでトレーニングを高速化する。
提案アルゴリズムは手書き文字の画像のデータセットを用いて検証する。
さらに,共形予測(CP)技術を用いた予測の不確実性の解析を行った。
シミュレーションの結果,提案したSemantic-MSLは,データポイントが少ないがトレーニングエネルギー消費が少ないため,分類精度が20%向上し,従来のスキームよりも優れていた。
関連論文リスト
- Exploiting the Semantic Knowledge of Pre-trained Text-Encoders for Continual Learning [70.64617500380287]
継続的な学習は、モデルが学習した知識を維持しながら、新しいデータから学習することを可能にする。
画像のラベル情報で利用できるセマンティック知識は、以前に取得したセマンティッククラスの知識と関連する重要なセマンティック情報を提供する。
テキスト埋め込みを用いて意味的類似性を把握し,タスク内およびタスク間のセマンティックガイダンスの統合を提案する。
論文 参考訳(メタデータ) (2024-08-02T07:51:44Z) - Text-Video Retrieval with Global-Local Semantic Consistent Learning [122.15339128463715]
我々は,シンプルで効果的なグローバル局所意味的一貫性学習(GLSCL)を提案する。
GLSCLは、テキストビデオ検索のためのモダリティをまたいだ潜在共有セマンティクスを活用する。
本手法はSOTAと同等の性能を実現し,計算コストの約220倍の高速化を実現している。
論文 参考訳(メタデータ) (2024-05-21T11:59:36Z) - Cognitive Semantic Communication Systems Driven by Knowledge Graph:
Principle, Implementation, and Performance Evaluation [74.38561925376996]
単一ユーザと複数ユーザのコミュニケーションシナリオに対して,認知意味コミュニケーションフレームワークが2つ提案されている。
知識グラフから推論規則をマイニングすることにより,効果的な意味補正アルゴリズムを提案する。
マルチユーザ認知型セマンティックコミュニケーションシステムにおいて,異なるユーザのメッセージを識別するために,メッセージ復元アルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-03-15T12:01:43Z) - Exploiting the relationship between visual and textual features in
social networks for image classification with zero-shot deep learning [0.0]
本稿では,CLIPニューラルネットワークアーキテクチャの伝達可能な学習能力に基づく分類器アンサンブルを提案する。
本研究は,Placesデータセットのラベルによる画像分類タスクに基づいて,視覚的部分のみを考慮した実験である。
画像に関連付けられたテキストを考えることは、目標に応じて精度を向上させるのに役立つ。
論文 参考訳(メタデータ) (2021-07-08T10:54:59Z) - Meta-Learning with Fewer Tasks through Task Interpolation [67.03769747726666]
現在のメタ学習アルゴリズムは多数のメタトレーニングタスクを必要としており、実際のシナリオではアクセスできない可能性がある。
タスクグラデーションを用いたメタラーニング(MLTI)により,タスクのペアをランダムにサンプリングし,対応する特徴やラベルを補間することにより,タスクを効果的に生成する。
実証的な実験では,提案する汎用MLTIフレームワークが代表的なメタ学習アルゴリズムと互換性があり,他の最先端戦略を一貫して上回っていることがわかった。
論文 参考訳(メタデータ) (2021-06-04T20:15:34Z) - CosSGD: Nonlinear Quantization for Communication-efficient Federated
Learning [62.65937719264881]
フェデレーション学習は、これらのクライアントのローカルデータを中央サーバに転送することなく、クライアント間での学習を促進する。
圧縮勾配降下のための非線形量子化を提案し、フェデレーションラーニングで容易に利用することができる。
本システムは,訓練過程の収束と精度を維持しつつ,通信コストを最大3桁まで削減する。
論文 参考訳(メタデータ) (2020-12-15T12:20:28Z) - SML: Semantic Meta-learning for Few-shot Semantic Segmentation [27.773396307292497]
本稿では,提案するメタ学習フレームワークSemantic Meta-Learningを提案する。
さらに,クラスレベルのセマンティック情報を取り入れるだけでなく,トレーニングデータに含まれる複数の画像から得られる情報を,プロトタイプの計算に有効活用する手法であるリッジ回帰(ridge regression)を提案する。
論文 参考訳(メタデータ) (2020-09-14T18:26:46Z) - Information-Theoretic Generalization Bounds for Meta-Learning and
Applications [42.275148861039895]
メタ学習の主なパフォーマンス指標は、メタ一般化ギャップである。
本稿ではメタ一般化ギャップに関する新しい情報理論上界について述べる。
論文 参考訳(メタデータ) (2020-05-09T05:48:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。