Large Language Model-Enhanced Interactive Agent for Public Education on Newborn Auricular Deformities
- URL: http://arxiv.org/abs/2409.12984v2
- Date: Mon, 23 Sep 2024 02:10:35 GMT
- Title: Large Language Model-Enhanced Interactive Agent for Public Education on Newborn Auricular Deformities
- Authors: Shuyue Wang, Liujie Ren, Tianyao Zhou, Lili Chen, Tianyu Zhang, Yaoyao Fu, Shuo Wang,
- Abstract summary: Auricular deformities are quite common in newborns with potential long-term negative effects of mental and even hearing problems.
With the help of large language model of Ernie of Baidu Inc., we derive a realization of interactive agent.
It is intelligent enough to detect which type of auricular deformity corresponding to uploaded images.
In terms of popularizing the knowledge of auricular deformities, the agent can give professional suggestions of the illness to parents.
- Score: 14.396700717621085
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Auricular deformities are quite common in newborns with potential long-term negative effects of mental and even hearing problems.Early diagnosis and subsequent treatment are critical for the illness; yet they are missing most of the time due to lack of knowledge among parents. With the help of large language model of Ernie of Baidu Inc., we derive a realization of interactive agent. Firstly, it is intelligent enough to detect which type of auricular deformity corresponding to uploaded images, which is accomplished by PaddleDetection, with precision rate 75\%. Secondly, in terms of popularizing the knowledge of auricular deformities, the agent can give professional suggestions of the illness to parents. The above two effects are evaluated via tests on volunteers with control groups in the paper. The agent can reach parents with newborns as well as their pediatrician remotely via Internet in vast, rural areas with quality medical diagnosis capabilities and professional query-answering functions, which is good news for newborn auricular deformity and other illness that requires early intervention for better treatment.
Related papers
- Case-based reasoning approach for diagnostic screening of children with developmental delays [2.5388345537743056]
It is estimated that there are about 7,500 cases (suspected cases of developmental delays) of suspicious cases annually in Huaibei, Anhui Province, China.
International research indicates that the optimal period for intervention in children with developmental delays is before the age of six.
This research adopts a hybrid model combining a CNN-Transformer model with Case-Based Reasoning (CBR) to enhance the screening efficiency for children with developmental delays.
arXiv Detail & Related papers (2024-07-18T04:28:52Z) - Neural Lineage [56.34149480207817]
We introduce a novel task known as neural lineage detection, aiming at discovering lineage relationships between parent and child models.
For practical convenience, we introduce a learning-free approach, which integrates an approximation of the finetuning process into the neural network representation similarity metrics.
For the pursuit of accuracy, we introduce a learning-based lineage detector comprising encoders and a transformer detector.
arXiv Detail & Related papers (2024-06-17T01:11:53Z) - Hear Me, See Me, Understand Me: Audio-Visual Autism Behavior Recognition [47.550391816383794]
We introduce a novel problem of audio-visual autism behavior recognition.
Social behavior recognition is an essential aspect previously omitted in AI-assisted autism screening research.
We will release our dataset, code, and pre-trained models.
arXiv Detail & Related papers (2024-03-22T22:52:35Z) - Detecting Autism Spectrum Disorders with Machine Learning Models Using
Speech Transcripts [0.0]
Autism spectrum disorder (ASD) can be defined as a neurodevelopmental disorder that affects how children interact, communicate and socialize with others.
Current methods to accurately diagnose ASD are invasive, time-consuming, and tedious.
New technologies are rapidly emerging that include machine learning models using speech, computer vision from facial, retinal, and brain MRI images of patients to accurately and timely detect this disorder.
arXiv Detail & Related papers (2021-10-07T09:10:15Z) - Development of an autism screening classification model for toddlers [0.0]
Autism spectrum disorder ASD is a neurodevelopmental disorder associated with challenges in communication, social interaction, and repetitive behaviors.
This work contributes to the early screening of toddlers by helping identify those who have ASD traits and should pursue formal clinical diagnosis.
arXiv Detail & Related papers (2021-09-29T09:07:39Z) - A Preliminary Study of a Two-Stage Paradigm for Preserving Speaker
Identity in Dysarthric Voice Conversion [50.040466658605524]
We propose a new paradigm for maintaining speaker identity in dysarthric voice conversion (DVC)
The poor quality of dysarthric speech can be greatly improved by statistical VC.
But as the normal speech utterances of a dysarthria patient are nearly impossible to collect, previous work failed to recover the individuality of the patient.
arXiv Detail & Related papers (2021-06-02T18:41:03Z) - Semi-Supervised Variational Reasoning for Medical Dialogue Generation [70.838542865384]
Two key characteristics are relevant for medical dialogue generation: patient states and physician actions.
We propose an end-to-end variational reasoning approach to medical dialogue generation.
A physician policy network composed of an action-classifier and two reasoning detectors is proposed for augmented reasoning ability.
arXiv Detail & Related papers (2021-05-13T04:14:35Z) - Deep Multi-task Learning for Depression Detection and Prediction in
Longitudinal Data [50.02223091927777]
Depression is among the most prevalent mental disorders, affecting millions of people of all ages globally.
Machine learning techniques have shown effective in enabling automated detection and prediction of depression for early intervention and treatment.
We introduce a novel deep multi-task recurrent neural network to tackle this challenge, in which depression classification is jointly optimized with two auxiliary tasks.
arXiv Detail & Related papers (2020-12-05T05:14:14Z) - Early Autism Spectrum Disorders Diagnosis Using Eye-Tracking Technology [62.997667081978825]
Lack of money, absence of qualified specialists, and low level of trust to the correction methods are the main issues that affect the in-time diagnoses of ASD.
Our team developed the algorithm that will be able to predict the chances of ASD according to the information from the gaze activity of the child.
arXiv Detail & Related papers (2020-08-21T20:22:55Z) - A Wearable Social Interaction Aid for Children with Autism [3.374341801706961]
The autism spectrum disorder (ASD) is a growing public health crisis.
Many children struggle to make eye contact, recognize facial expressions, and engage in social interactions.
There is an urgent need to innovate new methods of care delivery.
arXiv Detail & Related papers (2020-04-19T13:14:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.