Improved Image Classification with Manifold Neural Networks
- URL: http://arxiv.org/abs/2409.13063v1
- Date: Thu, 19 Sep 2024 19:55:33 GMT
- Title: Improved Image Classification with Manifold Neural Networks
- Authors: Caio F. Deberaldini Netto, Zhiyang Wang, Luana Ruiz,
- Abstract summary: Graph Neural Networks (GNNs) have gained popularity in various learning tasks.
In this paper, we explore GNNs' potential in general data representations, especially in the image domain.
We train a GNN to predict node labels corresponding to the image labels in the classification task, and leverage convergence of GNNs to analyze GNN generalization.
- Score: 13.02854405679453
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph Neural Networks (GNNs) have gained popularity in various learning tasks, with successful applications in fields like molecular biology, transportation systems, and electrical grids. These fields naturally use graph data, benefiting from GNNs' message-passing framework. However, the potential of GNNs in more general data representations, especially in the image domain, remains underexplored. Leveraging the manifold hypothesis, which posits that high-dimensional data lies in a low-dimensional manifold, we explore GNNs' potential in this context. We construct an image manifold using variational autoencoders, then sample the manifold to generate graphs where each node is an image. This approach reduces data dimensionality while preserving geometric information. We then train a GNN to predict node labels corresponding to the image labels in the classification task, and leverage convergence of GNNs to manifold neural networks to analyze GNN generalization. Experiments on MNIST and CIFAR10 datasets demonstrate that GNNs generalize effectively to unseen graphs, achieving competitive accuracy in classification tasks.
Related papers
- A Manifold Perspective on the Statistical Generalization of Graph Neural Networks [84.01980526069075]
Graph Neural Networks (GNNs) combine information from adjacent nodes by successive applications of graph convolutions.
We study the generalization gaps of GNNs on both node-level and graph-level tasks.
We show that the generalization gaps decrease with the number of nodes in the training graphs.
arXiv Detail & Related papers (2024-06-07T19:25:02Z) - Compact & Capable: Harnessing Graph Neural Networks and Edge Convolution
for Medical Image Classification [0.0]
We introduce a novel model that combines GNNs and edge convolution, leveraging the interconnectedness of RGB channel feature values to strongly represent connections between crucial graph nodes.
Our proposed model performs on par with state-of-the-art Deep Neural Networks (DNNs) but does so with 1000 times fewer parameters, resulting in reduced training time and data requirements.
arXiv Detail & Related papers (2023-07-24T13:39:21Z) - Training Graph Neural Networks on Growing Stochastic Graphs [114.75710379125412]
Graph Neural Networks (GNNs) rely on graph convolutions to exploit meaningful patterns in networked data.
We propose to learn GNNs on very large graphs by leveraging the limit object of a sequence of growing graphs, the graphon.
arXiv Detail & Related papers (2022-10-27T16:00:45Z) - Geodesic Graph Neural Network for Efficient Graph Representation
Learning [34.047527874184134]
We propose an efficient GNN framework called Geodesic GNN (GDGNN)
It injects conditional relationships between nodes into the model without labeling.
Conditioned on the geodesic representations, GDGNN is able to generate node, link, and graph representations that carry much richer structural information than plain GNNs.
arXiv Detail & Related papers (2022-10-06T02:02:35Z) - Overcoming Oversmoothness in Graph Convolutional Networks via Hybrid
Scattering Networks [11.857894213975644]
We propose a hybrid graph neural network (GNN) framework that combines traditional GCN filters with band-pass filters defined via the geometric scattering transform.
Our theoretical results establish the complementary benefits of the scattering filters to leverage structural information from the graph, while our experiments show the benefits of our method on various learning tasks.
arXiv Detail & Related papers (2022-01-22T00:47:41Z) - AdaGNN: A multi-modal latent representation meta-learner for GNNs based
on AdaBoosting [0.38073142980733]
Graph Neural Networks (GNNs) focus on extracting intrinsic network features.
We propose boosting-based meta learner for GNNs.
AdaGNN performs exceptionally well for applications with rich and diverse node neighborhood information.
arXiv Detail & Related papers (2021-08-14T03:07:26Z) - A Unified View on Graph Neural Networks as Graph Signal Denoising [49.980783124401555]
Graph Neural Networks (GNNs) have risen to prominence in learning representations for graph structured data.
In this work, we establish mathematically that the aggregation processes in a group of representative GNN models can be regarded as solving a graph denoising problem.
We instantiate a novel GNN model, ADA-UGNN, derived from UGNN, to handle graphs with adaptive smoothness across nodes.
arXiv Detail & Related papers (2020-10-05T04:57:18Z) - Graph Neural Networks: Architectures, Stability and Transferability [176.3960927323358]
Graph Neural Networks (GNNs) are information processing architectures for signals supported on graphs.
They are generalizations of convolutional neural networks (CNNs) in which individual layers contain banks of graph convolutional filters.
arXiv Detail & Related papers (2020-08-04T18:57:36Z) - XGNN: Towards Model-Level Explanations of Graph Neural Networks [113.51160387804484]
Graphs neural networks (GNNs) learn node features by aggregating and combining neighbor information.
GNNs are mostly treated as black-boxes and lack human intelligible explanations.
We propose a novel approach, known as XGNN, to interpret GNNs at the model-level.
arXiv Detail & Related papers (2020-06-03T23:52:43Z) - Graphs, Convolutions, and Neural Networks: From Graph Filters to Graph
Neural Networks [183.97265247061847]
We leverage graph signal processing to characterize the representation space of graph neural networks (GNNs)
We discuss the role of graph convolutional filters in GNNs and show that any architecture built with such filters has the fundamental properties of permutation equivariance and stability to changes in the topology.
We also study the use of GNNs in recommender systems and learning decentralized controllers for robot swarms.
arXiv Detail & Related papers (2020-03-08T13:02:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.