GNN-MultiFix: Addressing the pitfalls for GNNs for multi-label node classification
- URL: http://arxiv.org/abs/2411.14094v1
- Date: Thu, 21 Nov 2024 12:59:39 GMT
- Title: GNN-MultiFix: Addressing the pitfalls for GNNs for multi-label node classification
- Authors: Tianqi Zhao, Megha Khosla,
- Abstract summary: Graph neural networks (GNNs) have emerged as powerful models for learning representations of graph data.
We show that even the most expressive GNN may fail to learn in absence of node attributes and without using explicit label information as input.
We propose a straightforward approach, referred to as GNN-MultiFix, that integrates the feature, label, and positional information of a node.
- Score: 1.857645719601748
- License:
- Abstract: Graph neural networks (GNNs) have emerged as powerful models for learning representations of graph data showing state of the art results in various tasks. Nevertheless, the superiority of these methods is usually supported by either evaluating their performance on small subset of benchmark datasets or by reasoning about their expressive power in terms of certain graph isomorphism tests. In this paper we critically analyse both these aspects through a transductive setting for the task of node classification. First, we delve deeper into the case of multi-label node classification which offers a more realistic scenario and has been ignored in most of the related works. Through analysing the training dynamics for GNN methods we highlight the failure of GNNs to learn over multi-label graph datasets even for the case of abundant training data. Second, we show that specifically for transductive node classification, even the most expressive GNN may fail to learn in absence of node attributes and without using explicit label information as input. To overcome this deficit, we propose a straightforward approach, referred to as GNN-MultiFix, that integrates the feature, label, and positional information of a node. GNN-MultiFix demonstrates significant improvement across all the multi-label datasets. We release our code at https://anonymous.4open.science/r/Graph-MultiFix-4121.
Related papers
- Improved Image Classification with Manifold Neural Networks [13.02854405679453]
Graph Neural Networks (GNNs) have gained popularity in various learning tasks.
In this paper, we explore GNNs' potential in general data representations, especially in the image domain.
We train a GNN to predict node labels corresponding to the image labels in the classification task, and leverage convergence of GNNs to analyze GNN generalization.
arXiv Detail & Related papers (2024-09-19T19:55:33Z) - You do not have to train Graph Neural Networks at all on text-attributed graphs [25.044734252779975]
We introduce TrainlessGNN, a linear GNN model capitalizing on the observation that text encodings from the same class often cluster together in a linear subspace.
Our experiments reveal that our trainless models can either match or even surpass their conventionally trained counterparts.
arXiv Detail & Related papers (2024-04-17T02:52:11Z) - Classifying Nodes in Graphs without GNNs [50.311528896010785]
We propose a fully GNN-free approach for node classification, not requiring them at train or test time.
Our method consists of three key components: smoothness constraints, pseudo-labeling iterations and neighborhood-label histograms.
arXiv Detail & Related papers (2024-02-08T18:59:30Z) - NodeFormer: A Scalable Graph Structure Learning Transformer for Node
Classification [70.51126383984555]
We introduce a novel all-pair message passing scheme for efficiently propagating node signals between arbitrary nodes.
The efficient computation is enabled by a kernerlized Gumbel-Softmax operator.
Experiments demonstrate the promising efficacy of the method in various tasks including node classification on graphs.
arXiv Detail & Related papers (2023-06-14T09:21:15Z) - Seq-HGNN: Learning Sequential Node Representation on Heterogeneous Graph [57.2953563124339]
We propose a novel heterogeneous graph neural network with sequential node representation, namely Seq-HGNN.
We conduct extensive experiments on four widely used datasets from Heterogeneous Graph Benchmark (HGB) and Open Graph Benchmark (OGB)
arXiv Detail & Related papers (2023-05-18T07:27:18Z) - Hierarchical Model Selection for Graph Neural Netoworks [0.0]
We propose a hierarchical model selection framework (HMSF) that selects an appropriate graph neural network (GNN) model by analyzing the indicators of each graph data.
In the experiment, we show that the model selected by our HMSF achieves high performance on node classification for various types of graph data.
arXiv Detail & Related papers (2022-12-01T22:31:21Z) - Every Node Counts: Improving the Training of Graph Neural Networks on
Node Classification [9.539495585692007]
We propose novel objective terms for the training of GNNs for node classification.
Our first term seeks to maximize the mutual information between node and label features.
Our second term promotes anisotropic smoothness in the prediction maps.
arXiv Detail & Related papers (2022-11-29T23:25:14Z) - Identity-aware Graph Neural Networks [63.6952975763946]
We develop a class of message passing Graph Neural Networks (ID-GNNs) with greater expressive power than the 1-WL test.
ID-GNN extends existing GNN architectures by inductively considering nodes' identities during message passing.
We show that transforming existing GNNs to ID-GNNs yields on average 40% accuracy improvement on challenging node, edge, and graph property prediction tasks.
arXiv Detail & Related papers (2021-01-25T18:59:01Z) - Distance Encoding: Design Provably More Powerful Neural Networks for
Graph Representation Learning [63.97983530843762]
Graph Neural Networks (GNNs) have achieved great success in graph representation learning.
GNNs generate identical representations for graph substructures that may in fact be very different.
More powerful GNNs, proposed recently by mimicking higher-order tests, are inefficient as they cannot sparsity of underlying graph structure.
We propose Distance Depiction (DE) as a new class of graph representation learning.
arXiv Detail & Related papers (2020-08-31T23:15:40Z) - GPT-GNN: Generative Pre-Training of Graph Neural Networks [93.35945182085948]
Graph neural networks (GNNs) have been demonstrated to be powerful in modeling graph-structured data.
We present the GPT-GNN framework to initialize GNNs by generative pre-training.
We show that GPT-GNN significantly outperforms state-of-the-art GNN models without pre-training by up to 9.1% across various downstream tasks.
arXiv Detail & Related papers (2020-06-27T20:12:33Z) - Self-Enhanced GNN: Improving Graph Neural Networks Using Model Outputs [20.197085398581397]
Graph neural networks (GNNs) have received much attention recently because of their excellent performance on graph-based tasks.
We propose self-enhanced GNN (SEG), which improves the quality of the input data using the outputs of existing GNN models.
SEG consistently improves the performance of well-known GNN models such as GCN, GAT and SGC across different datasets.
arXiv Detail & Related papers (2020-02-18T12:27:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.