論文の概要: GASA-UNet: Global Axial Self-Attention U-Net for 3D Medical Image Segmentation
- arxiv url: http://arxiv.org/abs/2409.13146v1
- Date: Fri, 20 Sep 2024 01:23:53 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-07 11:41:13.407005
- Title: GASA-UNet: Global Axial Self-Attention U-Net for 3D Medical Image Segmentation
- Title(参考訳): GASA-UNet:3次元医用画像分割のためのグローバル軸自己注意U-Net
- Authors: Chengkun Sun, Russell Stevens Terry, Jiang Bian, Jie Xu,
- Abstract要約: 本稿では,GTA(Global Axial Self-Attention)ブロックを特徴とする改良されたU-Net型モデルを提案する。
このブロックは、異なる解剖学的断面を表す各2次元平面で、画像データを3次元実体として処理する。
我々のモデルは,特に小解剖学的構造に対して,セグメンテーション性能の有望な改善を証明した。
- 参考スコア(独自算出の注目度): 8.939740171704388
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurate segmentation of multiple organs and the differentiation of pathological tissues in medical imaging are crucial but challenging, especially for nuanced classifications and ambiguous organ boundaries. To tackle these challenges, we introduce GASA-UNet, a refined U-Net-like model featuring a novel Global Axial Self-Attention (GASA) block. This block processes image data as a 3D entity, with each 2D plane representing a different anatomical cross-section. Voxel features are defined within this spatial context, and a Multi-Head Self-Attention (MHSA) mechanism is utilized on extracted 1D patches to facilitate connections across these planes. Positional embeddings (PE) are incorporated into our attention framework, enriching voxel features with spatial context and enhancing tissue classification and organ edge delineation. Our model has demonstrated promising improvements in segmentation performance, particularly for smaller anatomical structures, as evidenced by enhanced Dice scores and Normalized Surface Dice (NSD) on three benchmark datasets, i.e., BTCV, AMOS, and KiTS23.
- Abstract(参考訳): 複数の臓器の正確なセグメンテーションと画像診断における病理組織の分化は極めて重要であるが、特にニュアンスド分類や曖昧な臓器の境界については困難である。
これらの課題に対処するために,GASA-UNetを導入した。
このブロックは、異なる解剖学的断面を表す各2次元平面で、画像データを3次元実体として処理する。
この空間的文脈内ではVoxelの特徴が定義され、抽出した1DパッチにMHSA(Multi-Head Self-Attention)機構を利用してこれらの平面間の接続を容易にする。
位置埋め込み (PE) は我々の注目の枠組みに組み込まれ, 空間的文脈でボクセルの特徴を豊かにし, 組織分類と臓器縁のデライン化を強化した。
我々のモデルは, BTCV, AMOS, KiTS23の3つのベンチマークデータセット上で, Diceスコアと正規化表面Dice (NSD) を用いて, より小さな解剖学的構造に対して, セグメンテーション性能の有望な改善を実証した。
関連論文リスト
- PointDGMamba: Domain Generalization of Point Cloud Classification via Generalized State Space Model [77.00221501105788]
ドメイン一般化(DG)は、最近、ポイントクラウド分類(PCC)モデルの、目に見えない領域への一般化性を改善するために研究されている。
本稿では、DG PCCにおける状態空間モデル(SSM)の一般化可能性について研究する。
本稿では,未知の領域に対して強い一般化性を持つ新しいフレームワークであるPointDGMambaを提案する。
論文 参考訳(メタデータ) (2024-08-24T12:53:48Z) - Teaching AI the Anatomy Behind the Scan: Addressing Anatomical Flaws in Medical Image Segmentation with Learnable Prior [34.54360931760496]
臓器の数、形状、相対的な位置などの重要な解剖学的特徴は、堅牢な多臓器分割モデルの構築に不可欠である。
我々は Anatomy-Informed Network (AIC-Net) と呼ばれる新しいアーキテクチャを導入する。
AIC-Netは、患者固有の解剖学に適応できる「解剖学的事前」と呼ばれる学習可能な入力を組み込んでいる。
論文 参考訳(メタデータ) (2024-03-27T10:46:24Z) - BEFUnet: A Hybrid CNN-Transformer Architecture for Precise Medical Image
Segmentation [0.0]
本稿では,医療画像の正確な分割のために,身体情報とエッジ情報の融合を強化するBEFUnetという,革新的なU字型ネットワークを提案する。
BEFUnetは、新しいローカル・クロス・アテンション・フィーチャー(LCAF)融合モジュール、新しいダブル・レベル・フュージョン(DLF)モジュール、デュアルブランチ・エンコーダの3つの主要モジュールから構成されている。
LCAFモジュールは、2つのモダリティの間に空間的に近接する特徴に対して、局所的な相互注意を選択的に行うことにより、エッジとボディの特徴を効率よく融合させる。
論文 参考訳(メタデータ) (2024-02-13T21:03:36Z) - Two-Stream Graph Convolutional Network for Intra-oral Scanner Image
Segmentation [133.02190910009384]
本稿では,2ストリームグラフ畳み込みネットワーク(TSGCN)を提案する。
TSGCNは3次元歯(表面)セグメンテーションにおいて最先端の方法よりも優れています。
論文 参考訳(メタデータ) (2022-04-19T10:41:09Z) - Multi-organ Segmentation Network with Adversarial Performance Validator [10.775440368500416]
本稿では,2次元から3次元のセグメンテーションフレームワークに対向的な性能検証ネットワークを導入する。
提案したネットワークは, 2次元粗い結果から3次元高品質なセグメンテーションマスクへの変換を行い, 共同最適化によりセグメンテーション精度が向上する。
NIH膵分節データセットの実験では、提案したネットワークが小臓器分節の最先端の精度を達成し、過去の最高性能を上回った。
論文 参考訳(メタデータ) (2022-04-16T18:00:29Z) - A unified 3D framework for Organs at Risk Localization and Segmentation
for Radiation Therapy Planning [56.52933974838905]
現在の医療ワークフローは、OAR(Organs-at-risk)のマニュアル記述を必要とする
本研究は,OARローカライゼーション・セグメンテーションのための統合された3Dパイプラインの導入を目的とする。
提案手法は医用画像に固有の3Dコンテキスト情報の活用を可能にする。
論文 参考訳(メタデータ) (2022-03-01T17:08:41Z) - Recurrent Feature Propagation and Edge Skip-Connections for Automatic
Abdominal Organ Segmentation [13.544665065396373]
本稿では,エンコーダ,エッジ検出器,エッジスキップ接続付きデコーダ,繰り返し特徴伝搬ヘッドを含む,エンドツーエンドの4つの主要コンポーネントを訓練した3Dネットワークを提案する。
実験の結果,提案したネットワークはいくつかの最先端モデルよりも優れていた。
論文 参考訳(メタデータ) (2022-01-02T08:33:19Z) - TSGCNet: Discriminative Geometric Feature Learning with Two-Stream
GraphConvolutional Network for 3D Dental Model Segmentation [141.2690520327948]
2流グラフ畳み込みネットワーク(TSGCNet)を提案し、異なる幾何学的特性から多視点情報を学ぶ。
3次元口腔内スキャナーで得られた歯科モデルのリアルタイムデータセットを用いてTSGCNetの評価を行った。
論文 参考訳(メタデータ) (2020-12-26T08:02:56Z) - Volumetric Medical Image Segmentation: A 3D Deep Coarse-to-fine
Framework and Its Adversarial Examples [74.92488215859991]
本稿では,これらの課題に効果的に取り組むために,新しい3Dベースの粗粒度フレームワークを提案する。
提案した3Dベースのフレームワークは、3つの軸すべてに沿ってリッチな空間情報を活用できるため、2Dよりも大きなマージンで優れている。
我々は,3つのデータセット,NIH膵データセット,JHMI膵データセット,JHMI病理嚢胞データセットについて実験を行った。
論文 参考訳(メタデータ) (2020-10-29T15:39:19Z) - Deep Attentive Features for Prostate Segmentation in 3D Transrectal
Ultrasound [59.105304755899034]
本稿では,経直腸超音波(TRUS)画像における前立腺のセグメンテーションを改善するために,アテンションモジュールを備えた新しい3次元ディープニューラルネットワークを開発した。
我々のアテンションモジュールは、アテンション機構を利用して、異なるレイヤから統合されたマルチレベル特徴を選択的に活用する。
3次元TRUSボリュームに挑戦する実験結果から,本手法は良好なセグメンテーション性能が得られることが示された。
論文 参考訳(メタデータ) (2019-07-03T05:21:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。