Overcoming Data Limitations in Internet Traffic Forecasting: LSTM Models with Transfer Learning and Wavelet Augmentation
- URL: http://arxiv.org/abs/2409.13181v1
- Date: Fri, 20 Sep 2024 03:18:20 GMT
- Title: Overcoming Data Limitations in Internet Traffic Forecasting: LSTM Models with Transfer Learning and Wavelet Augmentation
- Authors: Sajal Saha, Anwar Haque, Greg Sidebottom,
- Abstract summary: Effective internet traffic prediction in smaller ISP networks is challenged by limited data availability.
This paper explores this issue using transfer learning and data augmentation techniques with two LSTM-based models, LSTMSeq2Seq and LSTMSeq2SeqAtn.
The datasets represent real internet traffic telemetry, offering insights into diverse traffic patterns across different network domains.
- Score: 1.9662978733004601
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Effective internet traffic prediction in smaller ISP networks is challenged by limited data availability. This paper explores this issue using transfer learning and data augmentation techniques with two LSTM-based models, LSTMSeq2Seq and LSTMSeq2SeqAtn, initially trained on a comprehensive dataset provided by Juniper Networks and subsequently applied to smaller datasets. The datasets represent real internet traffic telemetry, offering insights into diverse traffic patterns across different network domains. Our study revealed that while both models performed well in single-step predictions, multi-step forecasts were challenging, particularly in terms of long-term accuracy. In smaller datasets, LSTMSeq2Seq generally outperformed LSTMSeq2SeqAtn, indicating that higher model complexity does not necessarily translate to better performance. The models' effectiveness varied across different network domains, reflecting the influence of distinct traffic characteristics. To address data scarcity, Discrete Wavelet Transform was used for data augmentation, leading to significant improvements in model performance, especially in shorter-term forecasts. Our analysis showed that data augmentation is crucial in scenarios with limited data. Additionally, the study included an analysis of the models' variability and consistency, with attention mechanisms in LSTMSeq2SeqAtn providing better short-term forecasting consistency but greater variability in longer forecasts. The results highlight the benefits and limitations of different modeling approaches in traffic prediction. Overall, this research underscores the importance of transfer learning and data augmentation in enhancing the accuracy of traffic prediction models, particularly in smaller ISP networks with limited data availability.
Related papers
- Improving Traffic Flow Predictions with SGCN-LSTM: A Hybrid Model for Spatial and Temporal Dependencies [55.2480439325792]
This paper introduces the Signal-Enhanced Graph Convolutional Network Long Short Term Memory (SGCN-LSTM) model for predicting traffic speeds across road networks.
Experiments on the PEMS-BAY road network traffic dataset demonstrate the SGCN-LSTM model's effectiveness.
arXiv Detail & Related papers (2024-11-01T00:37:00Z) - ConvLSTMTransNet: A Hybrid Deep Learning Approach for Internet Traffic Telemetry [0.0]
We present a novel hybrid deep learning model, named ConvLSTMTransNet, designed for time series prediction.
Our findings demonstrate that ConvLSTMTransNet significantly outperforms the baseline models by approximately 10% in terms of prediction accuracy.
arXiv Detail & Related papers (2024-09-20T03:12:57Z) - ST-Mamba: Spatial-Temporal Selective State Space Model for Traffic Flow Prediction [32.44888387725925]
The proposed ST-Mamba model is first to leverage the power of spatial-temporal learning in traffic flow prediction without using graph modeling.
The proposed ST-Mamba model achieves a 61.11% improvement in computational speed and increases prediction accuracy by 0.67%.
Experiments with real-world traffic datasets demonstrate that the textsfST-Mamba model sets a new benchmark in traffic flow prediction.
arXiv Detail & Related papers (2024-04-20T03:57:57Z) - TPLLM: A Traffic Prediction Framework Based on Pretrained Large Language Models [27.306180426294784]
We introduce TPLLM, a novel traffic prediction framework leveraging Large Language Models (LLMs)
In this framework, we construct a sequence embedding layer based on Conal Neural Networks (LoCNNs) and a graph embedding layer based on Graph Contemporalal Networks (GCNs) to extract sequence features and spatial features.
Experiments on two real-world datasets demonstrate commendable performance in both full-sample and few-shot prediction scenarios.
arXiv Detail & Related papers (2024-03-04T17:08:57Z) - To Repeat or Not To Repeat: Insights from Scaling LLM under Token-Crisis [50.31589712761807]
Large language models (LLMs) are notoriously token-hungry during pre-training, and high-quality text data on the web is approaching its scaling limit for LLMs.
We investigate the consequences of repeating pre-training data, revealing that the model is susceptible to overfitting.
Second, we examine the key factors contributing to multi-epoch degradation, finding that significant factors include dataset size, model parameters, and training objectives.
arXiv Detail & Related papers (2023-05-22T17:02:15Z) - Online Evolutionary Neural Architecture Search for Multivariate
Non-Stationary Time Series Forecasting [72.89994745876086]
This work presents the Online Neuro-Evolution-based Neural Architecture Search (ONE-NAS) algorithm.
ONE-NAS is a novel neural architecture search method capable of automatically designing and dynamically training recurrent neural networks (RNNs) for online forecasting tasks.
Results demonstrate that ONE-NAS outperforms traditional statistical time series forecasting methods.
arXiv Detail & Related papers (2023-02-20T22:25:47Z) - Transfer Learning Based Efficient Traffic Prediction with Limited
Training Data [3.689539481706835]
Efficient prediction of internet traffic is an essential part of Self Organizing Network (SON) for ensuring proactive management.
Deep sequence model in network traffic prediction with limited training data has not been studied extensively in the current works.
We investigated and evaluated the performance of the deep transfer learning technique in traffic prediction with inadequate historical data.
arXiv Detail & Related papers (2022-05-09T14:44:39Z) - Low-Rank Temporal Attention-Augmented Bilinear Network for financial
time-series forecasting [93.73198973454944]
Deep learning models have led to significant performance improvements in many problems coming from different domains, including prediction problems of financial time-series data.
The Temporal Attention-Augmented Bilinear network was recently proposed as an efficient and high-performing model for Limit Order Book time-series forecasting.
In this paper, we propose a low-rank tensor approximation of the model to further reduce the number of trainable parameters and increase its speed.
arXiv Detail & Related papers (2021-07-05T10:15:23Z) - Regularizing Generative Adversarial Networks under Limited Data [88.57330330305535]
This work proposes a regularization approach for training robust GAN models on limited data.
We show a connection between the regularized loss and an f-divergence called LeCam-divergence, which we find is more robust under limited training data.
arXiv Detail & Related papers (2021-04-07T17:59:06Z) - On Robustness and Transferability of Convolutional Neural Networks [147.71743081671508]
Modern deep convolutional networks (CNNs) are often criticized for not generalizing under distributional shifts.
We study the interplay between out-of-distribution and transfer performance of modern image classification CNNs for the first time.
We find that increasing both the training set and model sizes significantly improve the distributional shift robustness.
arXiv Detail & Related papers (2020-07-16T18:39:04Z) - Stacked Bidirectional and Unidirectional LSTM Recurrent Neural Network
for Forecasting Network-wide Traffic State with Missing Values [23.504633202965376]
We focus on RNN-based models and attempt to reformulate the way to incorporate RNN and its variants into traffic prediction models.
A stacked bidirectional and unidirectional LSTM network architecture (SBU-LSTM) is proposed to assist the design of neural network structures for traffic state forecasting.
We also propose a data imputation mechanism in the LSTM structure (LSTM-I) by designing an imputation unit to infer missing values and assist traffic prediction.
arXiv Detail & Related papers (2020-05-24T00:17:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.