ID-Guard: A Universal Framework for Combating Facial Manipulation via Breaking Identification
- URL: http://arxiv.org/abs/2409.13349v2
- Date: Thu, 10 Apr 2025 07:58:51 GMT
- Title: ID-Guard: A Universal Framework for Combating Facial Manipulation via Breaking Identification
- Authors: Zuomin Qu, Wei Lu, Xiangyang Luo, Qian Wang, Xiaochun Cao,
- Abstract summary: misuse of deep learning-based facial manipulation poses a significant threat to civil rights.<n>To prevent this fraud at its source, proactive defense has been proposed to disrupt the manipulation process.<n>This paper proposes a universal framework for combating facial manipulation, termed ID-Guard.
- Score: 60.73617868629575
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The misuse of deep learning-based facial manipulation poses a significant threat to civil rights. To prevent this fraud at its source, proactive defense has been proposed to disrupt the manipulation process by adding invisible adversarial perturbations into images, making the forged output unconvincing to observers. However, the non-specific disruption against the output may lead to the retention of identifiable facial features, potentially resulting in the stigmatization of the individual. This paper proposes a universal framework for combating facial manipulation, termed ID-Guard. Specifically, this framework operates with a single forward pass of an encoder-decoder network to produce a cross-model transferable adversarial perturbation. A novel Identity Destruction Module (IDM) is introduced to degrade identifiable features in forged faces. We optimize the perturbation generation by framing the disruption of different facial manipulations as a multi-task learning problem, and a dynamic weight strategy is devised to enhance cross-model performance. Experimental results demonstrate that the proposed ID-Guard exhibits strong efficacy in defending against various facial manipulation models, effectively degrading identifiable regions in manipulated images. It also enables disrupted images to evade facial inpainting and image recognition systems. Additionally, ID-Guard can seamlessly function as a plug-and-play component, integrating with other tasks such as adversarial training.
Related papers
- Diffusion-based Adversarial Identity Manipulation for Facial Privacy Protection [14.797807196805607]
Face recognition has led to serious privacy concerns due to potential unauthorized surveillance and user tracking on social networks.
Existing methods for enhancing privacy fail to generate natural face images that can protect facial privacy.
We propose DiffAIM to generate natural and highly transferable adversarial faces against malicious FR systems.
arXiv Detail & Related papers (2025-04-30T13:49:59Z) - NullSwap: Proactive Identity Cloaking Against Deepfake Face Swapping [8.284351945561099]
We analyze the essence of Deepfake face swapping and argue the necessity of protecting source identities rather than target images.
We propose NullSwap, a novel proactive defense approach that cloaks source image identities and nullifies face swapping under a pure black-box scenario.
Experiments demonstrate the outstanding ability of our approach to fool various identity recognition models.
arXiv Detail & Related papers (2025-03-24T13:49:39Z) - Novel AI Camera Camouflage: Face Cloaking Without Full Disguise [0.0]
This study demonstrates a novel approach to facial camouflage that combines targeted cosmetic perturbations and alpha transparency layer manipulation.
It achieves effective obfuscation through subtle modifications to key-point regions.
Results highlight the potential for creating scalable, low-visibility facial obfuscation strategies.
arXiv Detail & Related papers (2024-12-18T05:03:18Z) - Imperceptible Face Forgery Attack via Adversarial Semantic Mask [59.23247545399068]
We propose an Adversarial Semantic Mask Attack framework (ASMA) which can generate adversarial examples with good transferability and invisibility.
Specifically, we propose a novel adversarial semantic mask generative model, which can constrain generated perturbations in local semantic regions for good stealthiness.
arXiv Detail & Related papers (2024-06-16T10:38:11Z) - HFORD: High-Fidelity and Occlusion-Robust De-identification for Face
Privacy Protection [60.63915939982923]
Face de-identification is a practical way to solve the identity protection problem.
The existing facial de-identification methods have revealed several problems.
We present a High-Fidelity and Occlusion-Robust De-identification (HFORD) method to deal with these issues.
arXiv Detail & Related papers (2023-11-15T08:59:02Z) - Diff-Privacy: Diffusion-based Face Privacy Protection [58.1021066224765]
In this paper, we propose a novel face privacy protection method based on diffusion models, dubbed Diff-Privacy.
Specifically, we train our proposed multi-scale image inversion module (MSI) to obtain a set of SDM format conditional embeddings of the original image.
Based on the conditional embeddings, we design corresponding embedding scheduling strategies and construct different energy functions during the denoising process to achieve anonymization and visual identity information hiding.
arXiv Detail & Related papers (2023-09-11T09:26:07Z) - FACE-AUDITOR: Data Auditing in Facial Recognition Systems [24.082527732931677]
Few-shot-based facial recognition systems have gained increasing attention due to their scalability and ability to work with a few face images.
To prevent the face images from being misused, one straightforward approach is to modify the raw face images before sharing them.
We propose a complete toolkit FACE-AUDITOR that can query the few-shot-based facial recognition model and determine whether any of a user's face images is used in training the model.
arXiv Detail & Related papers (2023-04-05T23:03:54Z) - Information-containing Adversarial Perturbation for Combating Facial
Manipulation Systems [19.259372985094235]
Malicious applications of deep learning systems pose a serious threat to individuals' privacy and reputation.
We propose a novel two-tier protection method named Information-containing Adversarial Perturbation (IAP)
We use an encoder to map a facial image and its identity message to a cross-model adversarial example which can disrupt multiple facial manipulation systems.
arXiv Detail & Related papers (2023-03-21T06:48:14Z) - Restricted Black-box Adversarial Attack Against DeepFake Face Swapping [70.82017781235535]
We introduce a practical adversarial attack that does not require any queries to the facial image forgery model.
Our method is built on a substitute model persuing for face reconstruction and then transfers adversarial examples from the substitute model directly to inaccessible black-box DeepFake models.
arXiv Detail & Related papers (2022-04-26T14:36:06Z) - Initiative Defense against Facial Manipulation [82.96864888025797]
We propose a novel framework of initiative defense to degrade the performance of facial manipulation models controlled by malicious users.
We first imitate the target manipulation model with a surrogate model, and then devise a poison perturbation generator to obtain the desired venom.
arXiv Detail & Related papers (2021-12-19T09:42:28Z) - TAFIM: Targeted Adversarial Attacks against Facial Image Manipulations [0.0]
Face image manipulation methods can raise concerns by affecting an individual's privacy or spreading disinformation.
In this work, we propose a proactive defense to prevent face manipulation from happening in the first place.
We introduce a novel data-driven approach that produces image-specific perturbations which are embedded in the original images.
arXiv Detail & Related papers (2021-12-16T19:00:43Z) - Dual Spoof Disentanglement Generation for Face Anti-spoofing with Depth
Uncertainty Learning [54.15303628138665]
Face anti-spoofing (FAS) plays a vital role in preventing face recognition systems from presentation attacks.
Existing face anti-spoofing datasets lack diversity due to the insufficient identity and insignificant variance.
We propose Dual Spoof Disentanglement Generation framework to tackle this challenge by "anti-spoofing via generation"
arXiv Detail & Related papers (2021-12-01T15:36:59Z) - IdentityDP: Differential Private Identification Protection for Face
Images [17.33916392050051]
Face de-identification, also known as face anonymization, refers to generating another image with similar appearance and the same background, while the real identity is hidden.
We propose IdentityDP, a face anonymization framework that combines a data-driven deep neural network with a differential privacy mechanism.
Our model can effectively obfuscate the identity-related information of faces, preserve significant visual similarity, and generate high-quality images.
arXiv Detail & Related papers (2021-03-02T14:26:00Z) - Towards Face Encryption by Generating Adversarial Identity Masks [53.82211571716117]
We propose a targeted identity-protection iterative method (TIP-IM) to generate adversarial identity masks.
TIP-IM provides 95%+ protection success rate against various state-of-the-art face recognition models.
arXiv Detail & Related papers (2020-03-15T12:45:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.