論文の概要: MCICSAM: Monte Carlo-guided Interpolation Consistency Segment Anything Model for Semi-Supervised Prostate Zone Segmentation
- arxiv url: http://arxiv.org/abs/2409.13371v1
- Date: Fri, 20 Sep 2024 10:13:34 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-07 07:28:56.482544
- Title: MCICSAM: Monte Carlo-guided Interpolation Consistency Segment Anything Model for Semi-Supervised Prostate Zone Segmentation
- Title(参考訳): MCICSAM:Monte Carlo-Guided Interpolation Consistency Segment Anything Model for Semi-Supervised Prestate Zone Segmentation
- Authors: Guantian Huang, Beibei Li, Xiaobing Fan, Aritrick Chatterjee, Cheng Wei, Shouliang Qi, Wei Qian, Dianning He,
- Abstract要約: 半教師付き学習に基づく前立腺領域セグメンテーションに適用するためのモンテカルロ誘導補間一貫性セグメンテーションモデル(MCICSAM)を提案する。
Dice と Hausdorff Distance at 95th percentile (HD95) を用いてモデル性能を評価する。MCICSAM は Dice を 79.38% と 89.95% で、HD95 の値 3.12 と 2.27 をトランジションゾーンとトランジションゾーンで改善する。
- 参考スコア(独自算出の注目度): 2.8393048923825557
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurate segmentation of various regions within the prostate is pivotal for diagnosing and treating prostate-related diseases. However, the scarcity of labeled data, particularly in specialized medical fields like prostate imaging, poses a significant challenge. Segment Anything Model (SAM) is a new large model for natural image segmentation, but there are some challenges in medical imaging. In order to better utilize the powerful feature extraction capability of SAM as well as to address the problem of low data volume for medical image annotation, we use Low-Rank Adaptation (LoRA) and semi-supervised learning methods of Monte Carlo guided interpolation consistency (MCIC) to enhance the fine-tuned SAM. We propose Monte Carlo-guided Interpolation Consistency Segment Anything Model (MCICSAM) for application to semi-supervised learning based prostate region segmentation. In the unlabeled data section, MCIC performs two different interpolation transformations on the input data and incorporates Monte Carlo uncertainty analysis in the output, forcing the model to be consistent in its predictions. The consistency constraints imposed on these interpolated samples allow the model to fit the distribution of unlabeled data better, ultimately improving its performance in semi-supervised scenarios. We use Dice and Hausdorff Distance at 95th percentile (HD95) to validate model performance. MCICSAM yieldes Dice with 79.38% and 89.95%, along with improves HD95 values of 3.12 and 2.27 for transition zone and transition zone. At the same time MCICSAM demonstrates strong generalizability. This method is expected to bring new possibilities in the field of prostate image segmentation.
- Abstract(参考訳): 前立腺内の様々な領域の正確なセグメンテーションは、前立腺関連疾患の診断と治療に重要である。
しかし、特に前立腺画像のような特殊な医療分野におけるラベル付きデータの不足は、大きな課題となっている。
Segment Anything Model (SAM)は、自然画像分割のための新しい大きなモデルであるが、医療画像にはいくつかの課題がある。
SAMの強力な特徴抽出機能を活用し,医用画像アノテーションの低データボリューム問題に対処するために,モンテカルロのローランド適応(LoRA)と半教師あり学習手法を用いた補間整合(MCIC)を用いて,SAMの微調整を行う。
半教師付き学習に基づく前立腺領域セグメンテーションに適用するためのモンテカルロ誘導補間一貫性セグメンテーションモデル(MCICSAM)を提案する。
非ラベルデータセクションでは、MCICは入力データに対して2つの異なる補間変換を行い、モンテカルロの不確実性解析を出力に組み込む。
これらの補間されたサンプルに課される一貫性の制約により、モデルがラベルのないデータの分布をよりよく適合させ、最終的に半教師付きシナリオのパフォーマンスを向上させることができる。
Dice と Hausdorff Distance at 95th percentile (HD95) を使ってモデル性能を検証する。
MCICSAMはDiceを79.38%、89.95%で、HD95値を3.12と2.27で改善している。
同時に、MCICSAMは強い一般化性を示す。
この手法は前立腺画像分割の分野で新たな可能性をもたらすことが期待されている。
関連論文リスト
- Weakly supervised deep learning model with size constraint for prostate cancer detection in multiparametric MRI and generalization to unseen domains [0.90668179713299]
本モデルでは, 完全教師付きベースラインモデルにより, オンパー性能が向上することを示す。
また、未確認データドメインでテストした場合、完全に教師付きモデルと弱い教師付きモデルの両方のパフォーマンス低下も観察する。
論文 参考訳(メタデータ) (2024-11-04T12:24:33Z) - ASPS: Augmented Segment Anything Model for Polyp Segmentation [77.25557224490075]
SAM(Segment Anything Model)は、ポリープセグメンテーションに先例のないポテンシャルを導入している。
SAMのTransformerベースの構造は、グローバルおよび低周波情報を優先する。
CFAはトレーニング可能なCNNエンコーダブランチと凍結したViTエンコーダを統合し、ドメイン固有の知識の統合を可能にする。
論文 参考訳(メタデータ) (2024-06-30T14:55:32Z) - Uncertainty-Aware Adapter: Adapting Segment Anything Model (SAM) for Ambiguous Medical Image Segmentation [20.557472889654758]
Segment Anything Model (SAM) は自然画像のセグメンテーションにおいて大きな成功を収めた。
自然画像とは異なり、医療画像の多くの組織や病変はぼやけており、曖昧である可能性がある。
本研究では,不確実性を認識した医療画像のセグメンテーションのためにSAMを効率よく微調整するUncertainty-aware Adapterという新しいモジュールを提案する。
論文 参考訳(メタデータ) (2024-03-16T14:11:54Z) - Dual-scale Enhanced and Cross-generative Consistency Learning for Semi-supervised Medical Image Segmentation [49.57907601086494]
医用画像のセグメンテーションはコンピュータ支援診断において重要な役割を担っている。
半教師型医用画像(DEC-Seg)のための新しいDual-scale Enhanced and Cross-generative consistency learning frameworkを提案する。
論文 参考訳(メタデータ) (2023-12-26T12:56:31Z) - nnSAM: Plug-and-play Segment Anything Model Improves nnUNet Performance [12.169801149021566]
Segment Anything Model (SAM)は、特定のドメイントレーニングなしで画像セグメンテーションのための汎用ツールとして登場した。
nnUNetのような従来のモデルは推論中に自動セグメンテーションを実行するが、広範なドメイン固有のトレーニングが必要である。
提案するnnSAMは,SAMの頑健な特徴抽出とnnUNetの自動構成を統合し,小さなデータセットのセグメンテーション精度を向上させる。
論文 参考訳(メタデータ) (2023-09-29T04:26:25Z) - Cheap Lunch for Medical Image Segmentation by Fine-tuning SAM on Few
Exemplars [19.725817146049707]
Segment Anything Model (SAM) はスケールアップセグメンテーションモデルの顕著な機能を示した。
しかし, 医療領域における基礎モデルの導入は, 十分なデータのラベル付けが困難で費用がかかるため, 課題となっている。
本稿では,限られた数の例を用いてSAMを微調整するための効率的かつ実用的な手法を提案する。
論文 参考訳(メタデータ) (2023-08-27T15:21:25Z) - Rethinking Semi-Supervised Medical Image Segmentation: A
Variance-Reduction Perspective [51.70661197256033]
医用画像セグメンテーションのための階層化グループ理論を用いた半教師付きコントラスト学習フレームワークARCOを提案する。
まず、分散還元推定の概念を用いてARCOを構築することを提案し、特定の分散還元技術が画素/ボクセルレベルのセグメンテーションタスクにおいて特に有用であることを示す。
5つの2D/3D医療データセットと3つのセマンティックセグメンテーションデータセットのラベル設定が異なる8つのベンチマークで、我々のアプローチを実験的に検証する。
論文 参考訳(メタデータ) (2023-02-03T13:50:25Z) - Mine yOur owN Anatomy: Revisiting Medical Image Segmentation with Extremely Limited Labels [54.58539616385138]
我々は、Mine yOur owN Anatomy (MONA) と呼ばれる、新しい半教師付き2次元医用画像セグメンテーションフレームワークを紹介する。
まず、先行研究では、すべてのピクセルがモデルトレーニングに等しく重要であると論じており、我々はこの1つだけで意味のある解剖学的特徴を定義できないことを経験的に観察している。
第2に,医療画像を解剖学的特徴の集合に分解できるモデルを構築する。
論文 参考訳(メタデータ) (2022-09-27T15:50:31Z) - PCA: Semi-supervised Segmentation with Patch Confidence Adversarial
Training [52.895952593202054]
医用画像セグメンテーションのためのPatch Confidence Adrial Training (PCA) と呼ばれる半教師付き対向法を提案する。
PCAは各パッチの画素構造とコンテキスト情報を学習し、十分な勾配フィードバックを得る。
本手法は, 医用画像のセグメンテーションにおいて, 最先端の半教師付き手法より優れており, その有効性を示している。
論文 参考訳(メタデータ) (2022-07-24T07:45:47Z) - Enforcing Mutual Consistency of Hard Regions for Semi-supervised Medical
Image Segmentation [68.9233942579956]
半教師型医用画像セグメンテーションにおいて,ラベルのないハード領域を活用するための新しい相互整合性ネットワーク(MC-Net+)を提案する。
MC-Net+モデルは、限られたアノテーションで訓練された深いモデルは、非常に不確実で容易に分類された予測を出力する傾向があるという観察に動機づけられている。
MC-Net+のセグメンテーション結果と、最先端の5つの半教師付きアプローチを3つの公開医療データセットで比較した。
論文 参考訳(メタデータ) (2021-09-21T04:47:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。