Elite-EvGS: Learning Event-based 3D Gaussian Splatting by Distilling Event-to-Video Priors
- URL: http://arxiv.org/abs/2409.13392v1
- Date: Fri, 20 Sep 2024 10:47:52 GMT
- Title: Elite-EvGS: Learning Event-based 3D Gaussian Splatting by Distilling Event-to-Video Priors
- Authors: Zixin Zhang, Kanghao Chen, Lin Wang,
- Abstract summary: Event cameras are bio-inspired sensors that output asynchronous and sparse event streams, instead of fixed frames.
We propose a novel event-based 3DGS framework, named Elite-EvGS.
Our key idea is to distill the prior knowledge from the off-the-shelf event-to-video (E2V) models to effectively reconstruct 3D scenes from events.
- Score: 8.93657924734248
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Event cameras are bio-inspired sensors that output asynchronous and sparse event streams, instead of fixed frames. Benefiting from their distinct advantages, such as high dynamic range and high temporal resolution, event cameras have been applied to address 3D reconstruction, important for robotic mapping. Recently, neural rendering techniques, such as 3D Gaussian splatting (3DGS), have been shown successful in 3D reconstruction. However, it still remains under-explored how to develop an effective event-based 3DGS pipeline. In particular, as 3DGS typically depends on high-quality initialization and dense multiview constraints, a potential problem appears for the 3DGS optimization with events given its inherent sparse property. To this end, we propose a novel event-based 3DGS framework, named Elite-EvGS. Our key idea is to distill the prior knowledge from the off-the-shelf event-to-video (E2V) models to effectively reconstruct 3D scenes from events in a coarse-to-fine optimization manner. Specifically, to address the complexity of 3DGS initialization from events, we introduce a novel warm-up initialization strategy that optimizes a coarse 3DGS from the frames generated by E2V models and then incorporates events to refine the details. Then, we propose a progressive event supervision strategy that employs the window-slicing operation to progressively reduce the number of events used for supervision. This subtly relives the temporal randomness of the event frames, benefiting the optimization of local textural and global structural details. Experiments on the benchmark datasets demonstrate that Elite-EvGS can reconstruct 3D scenes with better textural and structural details. Meanwhile, our method yields plausible performance on the captured real-world data, including diverse challenging conditions, such as fast motion and low light scenes.
Related papers
- E-3DGS: Gaussian Splatting with Exposure and Motion Events [29.042018288378447]
We propose E-3DGS, a novel event-based approach that partitions events into motion and exposure.
We introduce a novel integration of 3DGS with exposure events for high-quality reconstruction of explicit scene representations.
Our method is faster and delivers better reconstruction quality than event-based NeRF while being more cost-effective than NeRF methods.
arXiv Detail & Related papers (2024-10-22T13:17:20Z) - EF-3DGS: Event-Aided Free-Trajectory 3D Gaussian Splatting [76.02450110026747]
Event cameras, inspired by biological vision, record pixel-wise intensity changes asynchronously with high temporal resolution.
We propose Event-Aided Free-Trajectory 3DGS, which seamlessly integrates the advantages of event cameras into 3DGS.
We evaluate our method on the public Tanks and Temples benchmark and a newly collected real-world dataset, RealEv-DAVIS.
arXiv Detail & Related papers (2024-10-20T13:44:24Z) - EaDeblur-GS: Event assisted 3D Deblur Reconstruction with Gaussian Splatting [8.842593320829785]
Event-assisted 3D Deblur Reconstruction with Gaussian Splatting (EaDeblur-GS) is presented.
It integrates event camera data to enhance the robustness of 3DGS against motion blur.
It achieves sharp 3D reconstructions in real-time, demonstrating performance comparable to state-of-the-art methods.
arXiv Detail & Related papers (2024-07-18T13:55:54Z) - Event3DGS: Event-Based 3D Gaussian Splatting for High-Speed Robot Egomotion [54.197343533492486]
Event3DGS can reconstruct high-fidelity 3D structure and appearance under high-speed egomotion.
Experiments on multiple synthetic and real-world datasets demonstrate the superiority of Event3DGS compared with existing event-based dense 3D scene reconstruction frameworks.
Our framework also allows one to incorporate a few motion-blurred frame-based measurements into the reconstruction process to further improve appearance fidelity without loss of structural accuracy.
arXiv Detail & Related papers (2024-06-05T06:06:03Z) - SAGS: Structure-Aware 3D Gaussian Splatting [53.6730827668389]
We propose a structure-aware Gaussian Splatting method (SAGS) that implicitly encodes the geometry of the scene.
SAGS reflects to state-of-the-art rendering performance and reduced storage requirements on benchmark novel-view synthesis datasets.
arXiv Detail & Related papers (2024-04-29T23:26:30Z) - VastGaussian: Vast 3D Gaussians for Large Scene Reconstruction [59.40711222096875]
We present VastGaussian, the first method for high-quality reconstruction and real-time rendering on large scenes based on 3D Gaussian Splatting.
Our approach outperforms existing NeRF-based methods and achieves state-of-the-art results on multiple large scene datasets.
arXiv Detail & Related papers (2024-02-27T11:40:50Z) - EvAC3D: From Event-based Apparent Contours to 3D Models via Continuous
Visual Hulls [46.94040300725127]
3D reconstruction from multiple views is a successful computer vision field with multiple deployments in applications.
We study the problem of 3D reconstruction from event-cameras, motivated by the advantages of event-based cameras in terms of low power and latency.
We propose Apparent Contour Events (ACE), a novel event-based representation that defines the geometry of the apparent contour of an object.
arXiv Detail & Related papers (2023-04-11T15:46:16Z) - Differentiable Event Stream Simulator for Non-Rigid 3D Tracking [82.56690776283428]
Our differentiable simulator enables non-rigid 3D tracking of deformable objects from event streams.
We show the effectiveness of our approach for various types of non-rigid objects and compare to existing methods for non-rigid 3D tracking.
arXiv Detail & Related papers (2021-04-30T17:58:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.