EaDeblur-GS: Event assisted 3D Deblur Reconstruction with Gaussian Splatting
- URL: http://arxiv.org/abs/2407.13520v3
- Date: Thu, 5 Sep 2024 13:16:23 GMT
- Title: EaDeblur-GS: Event assisted 3D Deblur Reconstruction with Gaussian Splatting
- Authors: Yuchen Weng, Zhengwen Shen, Ruofan Chen, Qi Wang, Jun Wang,
- Abstract summary: Event-assisted 3D Deblur Reconstruction with Gaussian Splatting (EaDeblur-GS) is presented.
It integrates event camera data to enhance the robustness of 3DGS against motion blur.
It achieves sharp 3D reconstructions in real-time, demonstrating performance comparable to state-of-the-art methods.
- Score: 8.842593320829785
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: 3D deblurring reconstruction techniques have recently seen significant advancements with the development of Neural Radiance Fields (NeRF) and 3D Gaussian Splatting (3DGS). Although these techniques can recover relatively clear 3D reconstructions from blurry image inputs, they still face limitations in handling severe blurring and complex camera motion. To address these issues, we propose Event-assisted 3D Deblur Reconstruction with Gaussian Splatting (EaDeblur-GS), which integrates event camera data to enhance the robustness of 3DGS against motion blur. By employing an Adaptive Deviation Estimator (ADE) network to estimate Gaussian center deviations and using novel loss functions, EaDeblur-GS achieves sharp 3D reconstructions in real-time, demonstrating performance comparable to state-of-the-art methods.
Related papers
- Beyond Gaussians: Fast and High-Fidelity 3D Splatting with Linear Kernels [51.08794269211701]
We introduce 3D Linear Splatting (3DLS), which replaces Gaussian kernels with linear kernels to achieve sharper and more precise results.
3DLS demonstrates state-of-the-art fidelity and accuracy, along with a 30% FPS improvement over baseline 3DGS.
arXiv Detail & Related papers (2024-11-19T11:59:54Z) - Visual SLAM with 3D Gaussian Primitives and Depth Priors Enabling Novel View Synthesis [11.236094544193605]
Conventional geometry-based SLAM systems lack dense 3D reconstruction capabilities.
We propose a real-time RGB-D SLAM system that incorporates a novel view synthesis technique, 3D Gaussian Splatting.
arXiv Detail & Related papers (2024-08-10T21:23:08Z) - PUP 3D-GS: Principled Uncertainty Pruning for 3D Gaussian Splatting [59.277480452459315]
We propose a principled spatial sensitivity pruning score that outperforms current approaches.
We also propose a multi-round prune-refine pipeline that can be applied to any pretrained 3D-GS model.
Our pipeline increases the average rendering speed of 3D-GS by 2.65$times$ while retaining more salient foreground information.
arXiv Detail & Related papers (2024-06-14T17:53:55Z) - Event3DGS: Event-Based 3D Gaussian Splatting for High-Speed Robot Egomotion [54.197343533492486]
Event3DGS can reconstruct high-fidelity 3D structure and appearance under high-speed egomotion.
Experiments on multiple synthetic and real-world datasets demonstrate the superiority of Event3DGS compared with existing event-based dense 3D scene reconstruction frameworks.
Our framework also allows one to incorporate a few motion-blurred frame-based measurements into the reconstruction process to further improve appearance fidelity without loss of structural accuracy.
arXiv Detail & Related papers (2024-06-05T06:06:03Z) - 3D-HGS: 3D Half-Gaussian Splatting [5.766096863155448]
Photo-realistic 3D Reconstruction is a fundamental problem in 3D computer vision.
We propose to employ 3D Half-Gaussian (3D-HGS) kernels, which can be used as a plug-and-play kernel.
arXiv Detail & Related papers (2024-06-04T19:04:29Z) - EvaGaussians: Event Stream Assisted Gaussian Splatting from Blurry Images [39.584967370302735]
3D Gaussian Splatting (3D-GS) has demonstrated exceptional capabilities in 3D scene reconstruction and novel view synthesis.
We introduce Event Stream Assisted Gaussian Splatting (EvaGaussians), a novel approach that integrates event streams captured by an event camera to assist in reconstructing high-quality 3D-GS from blurry images.
arXiv Detail & Related papers (2024-05-29T04:59:27Z) - Gaussian Opacity Fields: Efficient Adaptive Surface Reconstruction in Unbounded Scenes [50.92217884840301]
Gaussian Opacity Fields (GOF) is a novel approach for efficient, high-quality, and adaptive surface reconstruction in scenes.
GOF is derived from ray-tracing-based volume rendering of 3D Gaussians.
GOF surpasses existing 3DGS-based methods in surface reconstruction and novel view synthesis.
arXiv Detail & Related papers (2024-04-16T17:57:19Z) - Spec-Gaussian: Anisotropic View-Dependent Appearance for 3D Gaussian Splatting [55.71424195454963]
Spec-Gaussian is an approach that utilizes an anisotropic spherical Gaussian appearance field instead of spherical harmonics.
Our experimental results demonstrate that our method surpasses existing approaches in terms of rendering quality.
This improvement extends the applicability of 3D GS to handle intricate scenarios with specular and anisotropic surfaces.
arXiv Detail & Related papers (2024-02-24T17:22:15Z) - GaussianPro: 3D Gaussian Splatting with Progressive Propagation [49.918797726059545]
3DGS relies heavily on the point cloud produced by Structure-from-Motion (SfM) techniques.
We propose a novel method that applies a progressive propagation strategy to guide the densification of the 3D Gaussians.
Our method significantly surpasses 3DGS on the dataset, exhibiting an improvement of 1.15dB in terms of PSNR.
arXiv Detail & Related papers (2024-02-22T16:00:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.