論文の概要: Evaluating the plausibility of synthetic images for improving automated endoscopic stone recognition
- arxiv url: http://arxiv.org/abs/2409.13409v1
- Date: Fri, 20 Sep 2024 11:19:08 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-07 07:17:49.114866
- Title: Evaluating the plausibility of synthetic images for improving automated endoscopic stone recognition
- Title(参考訳): 自動内視鏡石盤認識のための合成画像の妥当性評価
- Authors: Ruben Gonzalez-Perez, Francisco Lopez-Tiro, Ivan Reyes-Amezcua, Eduardo Falcon-Morales, Rosa-Maria Rodriguez-Gueant, Jacques Hubert, Michel Daudon, Gilberto Ochoa-Ruiz, Christian Daul,
- Abstract要約: 現在、Morpho-Constitutional Analysis (MCA) は腎臓結石の組織学的診断における事実上のアプローチである。
近年では、内視鏡的石盤認識(ESR)と呼ばれる、そのようなタスクを術中実行することに焦点を当てている。
- 参考スコア(独自算出の注目度): 0.9480662172227129
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Currently, the Morpho-Constitutional Analysis (MCA) is the de facto approach for the etiological diagnosis of kidney stone formation, and it is an important step for establishing personalized treatment to avoid relapses. More recently, research has focused on performing such tasks intra-operatively, an approach known as Endoscopic Stone Recognition (ESR). Both methods rely on features observed in the surface and the section of kidney stones to separate the analyzed samples into several sub-groups. However, given the high intra-observer variability and the complex operating conditions found in ESR, there is a lot of interest in using AI for computer-aided diagnosis. However, current AI models require large datasets to attain a good performance and for generalizing to unseen distributions. This is a major problem as large labeled datasets are very difficult to acquire, and some classes of kidney stones are very rare. Thus, in this paper, we present a method based on diffusion as a way of augmenting pre-existing ex-vivo kidney stone datasets. Our aim is to create plausible diverse kidney stone images that can be used for pre-training models using ex-vivo data. We show that by mixing natural and synthetic images of CCD images, it is possible to train models capable of performing very well on unseen intra-operative data. Our results show that is possible to attain an improvement of 10% in terms of accuracy compared to a baseline model pre-trained only on ImageNet. Moreover, our results show an improvement of 6% for surface images and 10% for section images compared to a model train on CCD images only, which demonstrates the effectiveness of using synthetic images.
- Abstract(参考訳): 現在、Morpho-Constitutional Analysis (MCA) は腎臓結石の組織学的診断の事実上のアプローチであり、再発を避けるためにパーソナライズされた治療を確立するための重要なステップである。
近年では、内視鏡的石盤認識(ESR)と呼ばれる、そのようなタスクを術中実行することに焦点を当てている。
どちらの方法も、分析されたサンプルをいくつかのサブグループに分離するために、表面と腎臓石の断面で観察された特徴に依存している。
しかし、ESRで見られる高いサーバ内変動と複雑な動作条件を考えると、コンピュータ支援診断にAIを使うことには多くの関心がある。
しかし、現在のAIモデルは、優れたパフォーマンスを達成し、目に見えないディストリビューションを一般化するために、大きなデータセットを必要としている。
これは大きなラベル付きデータセットの取得が非常に困難であり、腎臓石のクラスは非常に稀であるため、大きな問題である。
そこで本研究では,既存の腎臓結石データセットを拡張するための拡散法を提案する。
本研究の目的は,前生児データを用いた事前トレーニングモデルに使用可能な多彩な腎臓結石画像を作成することである。
本研究では,CCD画像の自然画像と合成画像とを混合することにより,未確認の術中データに非常によく対応できるモデルを訓練することができることを示す。
その結果,ImageNetのみで事前学習したベースラインモデルに比べて精度が10%向上する可能性が示唆された。
さらに,CCD画像のみを用いたモデル列車と比較して,表面画像の6%,断面画像の10%の改善が見られ,合成画像の有効性が示された。
関連論文リスト
- Rapid hyperspectral photothermal mid-infrared spectroscopic imaging from
sparse data for gynecologic cancer tissue subtyping [3.550171634694342]
ミドル赤外線(Mid-Infrared、MIR)は、ラベルなし、生化学的に定量的な技術である。
この研究は、MIR光熱画像への新しいアプローチを示し、その速度を桁違いに向上させる。
論文 参考訳(メタデータ) (2024-02-28T00:57:35Z) - Beyond Images: An Integrative Multi-modal Approach to Chest X-Ray Report
Generation [47.250147322130545]
画像からテキストまでの放射線学レポート生成は,医療画像の発見を記述した放射線学レポートを自動生成することを目的としている。
既存の方法の多くは画像データのみに焦点をあてており、他の患者情報は放射線科医に公開されていない。
胸部X線レポートを生成するための多モードディープニューラルネットワークフレームワークを,非構造的臨床ノートとともにバイタルサインや症状などの構造化された患者データを統合することで提案する。
論文 参考訳(メタデータ) (2023-11-18T14:37:53Z) - Augmenting medical image classifiers with synthetic data from latent
diffusion models [12.077733447347592]
我々は,潜伏拡散モデルが皮膚疾患の画像を生成することを実証した。
我々は,複数の生成戦略を用いて生成した458,920個の合成画像の新しいデータセットを生成し,解析する。
論文 参考訳(メタデータ) (2023-08-23T22:34:49Z) - Realistic Data Enrichment for Robust Image Segmentation in
Histopathology [2.248423960136122]
拡散モデルに基づく新しい手法を提案し、不均衡なデータセットを、表現不足なグループから有意な例で拡張する。
本手法は,限定的な臨床データセットを拡張して,機械学習パイプラインのトレーニングに適したものにする。
論文 参考訳(メタデータ) (2023-04-19T09:52:50Z) - Whole-slide-imaging Cancer Metastases Detection and Localization with
Limited Tumorous Data [2.715884199292287]
スライド画像のラベル付けがほとんどない場合,腫瘍の局所化と検出の問題に対処する。
提案手法は,パブリックなCamelyon16データセット上でのトレーニングサンプルの10%以下で同様の性能を実現する。
論文 参考訳(メタデータ) (2023-03-18T06:07:10Z) - Affinity Feature Strengthening for Accurate, Complete and Robust Vessel
Segmentation [48.638327652506284]
血管セグメンテーションは、冠動脈狭窄、網膜血管疾患、脳動脈瘤などの多くの医学的応用において重要である。
コントラストに敏感なマルチスケールアフィニティアプローチを用いて,幾何学的手法と画素単位のセグメンテーション特徴を連成的にモデル化する新しいアプローチであるAFNを提案する。
論文 参考訳(メタデータ) (2022-11-12T05:39:17Z) - Boosting Kidney Stone Identification in Endoscopic Images Using Two-Step
Transfer Learning [0.8431877864777444]
提案手法は,CCDカメラで取得した腎臓結石の画像に基づいて得られた知識を,内視鏡画像から画像を分類する最終モデルに伝達する。
その結果、類似した情報を持つ異なる領域からの学習特徴が、実環境における分類を行うモデルの性能向上に有効であることが示唆された。
論文 参考訳(メタデータ) (2022-10-24T23:22:22Z) - Incremental Cross-view Mutual Distillation for Self-supervised Medical
CT Synthesis [88.39466012709205]
本稿では,スライス間の分解能を高めるために,新しい医療スライスを構築した。
臨床実践において, 根本・中間医療スライスは常に欠落していることを考慮し, 相互蒸留の段階的相互蒸留戦略を導入する。
提案手法は,最先端のアルゴリズムよりも明確なマージンで優れる。
論文 参考訳(メタデータ) (2021-12-20T03:38:37Z) - Variational Knowledge Distillation for Disease Classification in Chest
X-Rays [102.04931207504173]
我々は,X線に基づく疾患分類のための新しい確率的推論フレームワークである反復的知識蒸留(VKD)を提案する。
提案手法の有効性を,X線画像とEHRを用いた3つの公開ベンチマークデータセットに示す。
論文 参考訳(メタデータ) (2021-03-19T14:13:56Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
ディープラーニングは、病気の識別性能を改善するための最も強力なコンピュータ支援診断技術となった。
胸部X線撮影では、大規模データの注釈付けには専門的なドメイン知識が必要で、時間を要する。
本論文では、単一モデルにおける疾患同定性能を改善するために、複数対1の分布学習(MODL)とK-nearest neighbor smoothing(KNNS)手法を提案する。
論文 参考訳(メタデータ) (2021-02-26T02:29:30Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
磁気共鳴画像(MRI)の異常検出は教師なし手法で行うことができる。
本研究では,変分オートエンコーダの潜伏空間における相似関数の計算に基づいて,腫瘍検出のためのスライスワイズ半教師法を提案する。
本研究では,高解像度画像上でのモデルをトレーニングし,再現の質を向上させることにより,異なるベースラインに匹敵する結果が得られることを示す。
論文 参考訳(メタデータ) (2020-07-24T14:02:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。