論文の概要: Differentially Private Multimodal Laplacian Dropout (DP-MLD) for EEG Representative Learning
- arxiv url: http://arxiv.org/abs/2409.13440v1
- Date: Fri, 20 Sep 2024 12:08:22 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-07 07:17:49.014465
- Title: Differentially Private Multimodal Laplacian Dropout (DP-MLD) for EEG Representative Learning
- Title(参考訳): 脳波代表学習のための個人用マルチモーダルラプラシアンドロップアウト(DP-MLD)
- Authors: Xiaowen Fu, Bingxin Wang, Xinzhou Guo, Guoqing Liu, Yang Xiang,
- Abstract要約: マルチモーダル脳波(EEG)学習は、疾患検出において大きな可能性を秘めている。
プライバシー保護のための広く採用されているスキームは、その明確な解釈と実装の容易さのため、差分プライバシー(DP)である。
本稿では,マルチモーダル脳波学習のためのDP-MLD方式を提案する。
- 参考スコア(独自算出の注目度): 9.215609291641591
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, multimodal electroencephalogram (EEG) learning has shown great promise in disease detection. At the same time, ensuring privacy in clinical studies has become increasingly crucial due to legal and ethical concerns. One widely adopted scheme for privacy protection is differential privacy (DP) because of its clear interpretation and ease of implementation. Although numerous methods have been proposed under DP, it has not been extensively studied for multimodal EEG data due to the complexities of models and signal data considered there. In this paper, we propose a novel Differentially Private Multimodal Laplacian Dropout (DP-MLD) scheme for multimodal EEG learning. Our approach proposes a novel multimodal representative learning model that processes EEG data by language models as text and other modal data by vision transformers as images, incorporating well-designed cross-attention mechanisms to effectively extract and integrate cross-modal features. To achieve DP, we design a novel adaptive feature-level Laplacian dropout scheme, where randomness allocation and performance are dynamically optimized within given privacy budgets. In the experiment on an open-source multimodal dataset of Freezing of Gait (FoG) in Parkinson's Disease (PD), our proposed method demonstrates an approximate 4\% improvement in classification accuracy, and achieves state-of-the-art performance in multimodal EEG learning under DP.
- Abstract(参考訳): 近年,マルチモーダル脳波(EEG)学習は,疾患検出において大きな可能性を秘めている。
同時に、法的・倫理的な懸念から、臨床研究におけるプライバシーの確保がますます重要になっている。
プライバシー保護のための広く採用されているスキームは、その明確な解釈と実装の容易さのため、差分プライバシー(DP)である。
DP下では数多くの手法が提案されているが、モデルや信号データの複雑さのため、マルチモーダル脳波データについては広く研究されていない。
本稿では,マルチモーダル脳波学習のためのDP-MLD方式を提案する。
本稿では,言語モデルによる脳波データをテキストとして処理し,視覚変換器による脳波データを画像として処理する多モーダル代表学習モデルを提案する。
DPを実現するために,プライバシ予算内でランダム度割り当てと性能を動的に最適化する新しい適応型機能レベルのラプラシアンドロップアウト方式を設計する。
パーキンソン病(PD)におけるフリーズ・オブ・ゲイト(FoG)のオープンソースマルチモーダルデータセットの実験において,提案手法は分類精度をおよそ4倍改善し,DP下でのマルチモーダル脳波学習における最先端性能を実現する。
関連論文リスト
- Supervised Multi-Modal Fission Learning [19.396207029419813]
マルチモーダルデータセットからの学習は相補的な情報を活用することができ、予測タスクのパフォーマンスを向上させることができる。
本稿では,グローバルな関節,部分的な関節,個々のコンポーネントを同時に識別するマルチモーダル・フィッション・ラーニング・モデルを提案する。
論文 参考訳(メタデータ) (2024-09-30T17:58:03Z) - Deep Multimodal Collaborative Learning for Polyp Re-Identification [4.4028428688691905]
大腸内視鏡によるポリープ再同定は、大きなギャラリーの同じポリープと異なるカメラで撮影された異なるビューの画像とを一致させることを目的としている。
ImageNetデータセットでトレーニングされたCNNモデルを直接適用する従来のオブジェクトReIDの手法は、不満足な検索性能をもたらす。
本稿では,ポリプ再同定のためのDMCLという新しい多モーダル協調学習フレームワークを提案する。
論文 参考訳(メタデータ) (2024-08-12T04:05:19Z) - Geodesic Optimization for Predictive Shift Adaptation on EEG data [53.58711912565724]
ドメイン適応メソッドは、$X$と$y$で分散シフトが同時に発生したときに苦労する。
本稿では,GOPSA(Geodesic Optimization for Predictive Shift Adaptation)と呼ばれる新しい手法を提案する。
GOPSAは、脳波のバイオメディカル応用のための混合効果モデリングと機械学習を併用する可能性を持っている。
論文 参考訳(メタデータ) (2024-07-04T12:15:42Z) - MMA-DFER: MultiModal Adaptation of unimodal models for Dynamic Facial Expression Recognition in-the-wild [81.32127423981426]
実世界のアプリケーションでは,音声およびビデオデータに基づくマルチモーダル感情認識が重要である。
近年の手法は、強力なマルチモーダルエンコーダの事前学習に自己教師付き学習(SSL)の進歩を活用することに重点を置いている。
SSL-pre-trained disimodal encoders を用いて,この問題に対する異なる視点とマルチモーダル DFER の性能向上について検討する。
論文 参考訳(メタデータ) (2024-04-13T13:39:26Z) - Multimodal Representation Learning by Alternating Unimodal Adaptation [73.15829571740866]
MLA(Multimodal Learning with Alternating Unimodal Adaptation)を提案する。
MLAは、それを交互に一助学習プロセスに変換することで、従来の共同マルチモーダル学習プロセスを再構築する。
共有ヘッドを通じてモーダル間相互作用をキャプチャし、異なるモーダル間で連続的な最適化を行う。
実験は5つの多様なデータセットで行われ、完全なモダリティを持つシナリオと、欠落したモダリティを持つシナリオを含む。
論文 参考訳(メタデータ) (2023-11-17T18:57:40Z) - HEALNet: Multimodal Fusion for Heterogeneous Biomedical Data [10.774128925670183]
本稿では,フレキシブルなマルチモーダル融合アーキテクチャであるHybrid Early-fusion Attention Learning Network (HEALNet)を提案する。
The Cancer Genome Atlas (TCGA) の4つのがんデータセットにおける全スライド画像と多モードデータを用いたマルチモーダルサバイバル解析を行った。
HEALNetは、他のエンドツーエンドの訓練された融合モデルと比較して最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2023-11-15T17:06:26Z) - Exploiting Modality-Specific Features For Multi-Modal Manipulation
Detection And Grounding [54.49214267905562]
マルチモーダルな操作検出とグラウンド処理のためのトランスフォーマーベースのフレームワークを構築する。
本フレームワークは,マルチモーダルアライメントの能力を維持しながら,モダリティ特有の特徴を同時に探求する。
本稿では,グローバルな文脈的キューを各モーダル内に適応的に集約する暗黙的操作クエリ(IMQ)を提案する。
論文 参考訳(メタデータ) (2023-09-22T06:55:41Z) - Source-free Domain Adaptation Requires Penalized Diversity [60.04618512479438]
ソースデータがない場合、異なるドメイン間の知識伝達に対処するために、ソースフリードメイン適応(SFDA)が導入された。
教師なしのFDAでは、多様性はソース上の1つの仮説を学習するか、共有された特徴抽出器で複数の仮説を学習することに限定される。
本稿では,異なる特徴抽出器を用いて表現多様性を促進する新しい無教師付きSFDAアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-04-06T00:20:19Z) - Generalizing Multimodal Variational Methods to Sets [35.69942798534849]
本稿では,マルチモーダル潜在空間を学習するために,Set Multimodal VAE(SMVAE)と呼ばれる新しい変分法を提案する。
共同モダリティ後部分布を直接モデル化することにより、提案したSMVAEは、複数のモダリティ間で情報を交換し、分解による欠点を補うことを学習する。
論文 参考訳(メタデータ) (2022-12-19T23:50:19Z) - MS-Net: Multi-Site Network for Improving Prostate Segmentation with
Heterogeneous MRI Data [75.73881040581767]
本稿では,ロバスト表現を学習し,前立腺のセグメンテーションを改善するための新しいマルチサイトネットワーク(MS-Net)を提案する。
当社のMS-Netは,すべてのデータセットのパフォーマンスを一貫して改善し,マルチサイト学習における最先端の手法よりも優れています。
論文 参考訳(メタデータ) (2020-02-09T14:11:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。