Efficient fault-tolerant code switching via one-way transversal CNOT gates
- URL: http://arxiv.org/abs/2409.13465v1
- Date: Fri, 20 Sep 2024 12:54:47 GMT
- Title: Efficient fault-tolerant code switching via one-way transversal CNOT gates
- Authors: Sascha Heußen, Janine Hilder,
- Abstract summary: We present a code scheme that respects the constraints of FT circuit design by only making use of switching gates.
We analyze application of the scheme to low-distance color codes, which are suitable for operation in existing quantum processors.
We discuss how the scheme can be implemented with a large degree of parallelization, provided that logical auxiliary qubits can be prepared reliably enough.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Code switching is an established technique that facilitates a universal set of FT quantum gate operations by combining two QEC codes with complementary sets of gates, which each by themselves are easy to implement fault-tolerantly. In this work, we present a code switching scheme that respects the constraints of FT circuit design by only making use of transversal gates. These gates are intrinsically FT without additional qubit overhead. We analyze application of the scheme to low-distance color codes, which are suitable for operation in existing quantum processors, for instance based on trapped ions or neutral atoms. We briefly discuss connectivity constraints that arise for architectures based on superconducting qubits. Numerical simulations of circuit-level noise indicate that a logical $T$-gate, facilitated by our scheme, could outperform both flag-FT magic state injection protocols and a physical $T$-gate at low physical error rates. Transversal code switching naturally scales to code pairs of arbitrary code distance. We observe improved performance of a distance-5 protocol compared to both the distance-3 implementation and the physical gate for realistically attainable physical entangling gate error rates. We discuss how the scheme can be implemented with a large degree of parallelization, provided that logical auxiliary qubits can be prepared reliably enough. Our logical $T$-gate circumvents potentially costly magic state factories. The requirements to perform QEC and to achieve an FT universal gate set are then essentially the same: Prepare logical auxiliary qubits offline, execute transversal gates and perform fast-enough measurements. Transversal code switching thus serves to enable more practical hardware realizations of FT universal quantum computation. The scheme alleviates resource requirements for experimental demonstrations of quantum algorithms run on logical qubits.
Related papers
- Universal Quantum Gate Set for Gottesman-Kitaev-Preskill Logical Qubits [0.0]
We report on the experimental demonstration of a universal gate set for the GKP code.
This includes single-qubit gates and -- for the first time -- a two-qubit entangling gate between logical code words.
We demonstrate single-qubit gates with a logical process fidelity as high as 0.960 and a two-qubit entangling gate with a logical process fidelity of 0.680.
arXiv Detail & Related papers (2024-09-09T09:23:36Z) - Quantum Compiling with Reinforcement Learning on a Superconducting Processor [55.135709564322624]
We develop a reinforcement learning-based quantum compiler for a superconducting processor.
We demonstrate its capability of discovering novel and hardware-amenable circuits with short lengths.
Our study exemplifies the codesign of the software with hardware for efficient quantum compilation.
arXiv Detail & Related papers (2024-06-18T01:49:48Z) - Demonstrating a universal logical gate set on a superconducting quantum processor [13.391691829693226]
Fault-tolerant quantum computing (FTQC) is essential for achieving large-scale practical quantum computation.
Here, we experimentally implement logical CNOT gate as well as arbitrary single-qubit rotation gates on distance-2 surface codes using the superconducting quantum processor Wutextkong.
In the experiment, we design encoding circuits to prepare the required logical states, where fidelities of the fault-tolerantly prepared logical states surpass those of the physical states.
arXiv Detail & Related papers (2024-05-15T02:04:34Z) - Experimental fault-tolerant code switching [1.9088985324817254]
We present the first experimental implementation of fault-tolerant code switching between two codes.
We construct logical circuits and prepare 12 different logical states which are not accessible in a fault-tolerant way within a single code.
Our results experimentally open up a new route towards deterministic control over logical qubits with low auxiliary qubit overhead.
arXiv Detail & Related papers (2024-03-20T16:40:57Z) - Universal qudit gate synthesis for transmons [44.22241766275732]
We design a superconducting qudit-based quantum processor.
We propose a universal gate set featuring a two-qudit cross-resonance entangling gate.
We numerically demonstrate the synthesis of $rm SU(16)$ gates for noisy quantum hardware.
arXiv Detail & Related papers (2022-12-08T18:59:53Z) - Transversal Injection: A method for direct encoding of ancilla states
for non-Clifford gates using stabiliser codes [55.90903601048249]
We introduce a protocol to potentially reduce this overhead for non-Clifford gates.
Preliminary results hint at high quality fidelities at larger distances.
arXiv Detail & Related papers (2022-11-18T06:03:10Z) - Partitioning qubits in hypergraph product codes to implement logical
gates [0.0]
Transversal gates are the simplest type of fault-tolerant logical gates.
We show that gates can be used as the basis for universal quantum computing on LDPC codes.
arXiv Detail & Related papers (2022-04-22T16:45:19Z) - Logical blocks for fault-tolerant topological quantum computation [55.41644538483948]
We present a framework for universal fault-tolerant logic motivated by the need for platform-independent logical gate definitions.
We explore novel schemes for universal logic that improve resource overheads.
Motivated by the favorable logical error rates for boundaryless computation, we introduce a novel computational scheme.
arXiv Detail & Related papers (2021-12-22T19:00:03Z) - Realization of arbitrary doubly-controlled quantum phase gates [62.997667081978825]
We introduce a high-fidelity gate set inspired by a proposal for near-term quantum advantage in optimization problems.
By orchestrating coherent, multi-level control over three transmon qutrits, we synthesize a family of deterministic, continuous-angle quantum phase gates acting in the natural three-qubit computational basis.
arXiv Detail & Related papers (2021-08-03T17:49:09Z) - Fault-tolerant Coding for Quantum Communication [71.206200318454]
encode and decode circuits to reliably send messages over many uses of a noisy channel.
For every quantum channel $T$ and every $eps>0$ there exists a threshold $p(epsilon,T)$ for the gate error probability below which rates larger than $C-epsilon$ are fault-tolerantly achievable.
Our results are relevant in communication over large distances, and also on-chip, where distant parts of a quantum computer might need to communicate under higher levels of noise.
arXiv Detail & Related papers (2020-09-15T15:10:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.