論文の概要: Flotta: a Secure and Flexible Spark-inspired Federated Learning Framework
- arxiv url: http://arxiv.org/abs/2409.13473v1
- Date: Fri, 20 Sep 2024 13:04:42 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-07 07:04:14.194891
- Title: Flotta: a Secure and Flexible Spark-inspired Federated Learning Framework
- Title(参考訳): Flotta: セキュアでフレキシブルなSparkにインスパイアされたフェデレーション学習フレームワーク
- Authors: Claudio Bonesana, Daniele Malpetti, Sandra Mitrović, Francesca Mangili, Laura Azzimonti,
- Abstract要約: Flottaは、バイオメディカルフィールドのような高度なセキュリティを必要とするコンテキストで研究を行う多党コンソーシアムに分散されたセンシティブなデータに基づいて、機械学習モデルをトレーニングするために設計されたフェデレートラーニングフレームワークである。
FlottaはApache Sparkのいくつかの側面にインスパイアされたPythonパッケージで、柔軟性とセキュリティの両方を提供し、コンソーシアム内部のマシンのみを使用して研究を行うことができる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present Flotta, a Federated Learning framework designed to train machine learning models on sensitive data distributed across a multi-party consortium conducting research in contexts requiring high levels of security, such as the biomedical field. Flotta is a Python package, inspired in several aspects by Apache Spark, which provides both flexibility and security and allows conducting research using solely machines internal to the consortium. In this paper, we describe the main components of the framework together with a practical use case to illustrate the framework's capabilities and highlight its security, flexibility and user-friendliness.
- Abstract(参考訳): Flottaは、バイオメディカルフィールドのような高度なセキュリティを必要とする状況下で研究を行う多党コンソーシアムに分散されたセンシティブなデータに基づいて機械学習モデルをトレーニングするために設計されたフェデレートラーニングフレームワークである。
FlottaはPythonパッケージで、Apache Sparkのいくつかの側面にインスパイアされたもので、柔軟性とセキュリティの両方を提供し、コンソーシアム内部のマシンのみを使用して研究を行うことができる。
本稿では,フレームワークの主要なコンポーネントと,フレームワークの能力とセキュリティ,柔軟性,ユーザフレンドリさを強調する実践的なユースケースについて述べる。
関連論文リスト
- Federated Learning in Chemical Engineering: A Tutorial on a Framework for Privacy-Preserving Collaboration Across Distributed Data Sources [0.0]
この研究は、化学工学のコミュニティに、この分野へのアクセシビリティな導入を提供することを目的としている。
製造最適化、マルチモーダルデータ統合、薬物発見といったタスクにおけるフェデレートラーニングの適用について検討する。
チュートリアルは、$textttFlower$や$texttTensorFlow Federated$といった主要なフレームワークを使用して構築され、FLを採用するための適切なツールを化学技術者に提供するように設計されている。
論文 参考訳(メタデータ) (2024-11-23T13:16:06Z) - Stalactite: Toolbox for Fast Prototyping of Vertical Federated Learning Systems [37.11550251825938]
本稿では,VFL(Vertical Federated Learning)システムのためのオープンソースのフレームワークであるemphStalactiteを紹介する。
VFLはデータサンプルが複数のデータ所有者にまたがる機能によって分割されるFLの一種である。
実世界のレコメンデーションデータセットでその使い方を実証する。
論文 参考訳(メタデータ) (2024-09-23T21:29:03Z) - Advances in APPFL: A Comprehensive and Extensible Federated Learning Framework [1.4206132527980742]
Federated Learning(FL)は、データプライバシを保持しながら協調的なモデルトレーニングを可能にする分散機械学習パラダイムである。
本稿では,統合学習のためのフレームワークおよびベンチマークスイートであるAPPFLの開発における最近の進歩について述べる。
本稿では, 通信効率, プライバシー保護, 計算性能, 資源利用など, FLの様々な側面を評価する広範な実験を通じて, APPFLの能力を実証する。
論文 参考訳(メタデータ) (2024-09-17T22:20:26Z) - FLEX: FLEXible Federated Learning Framework [6.112199274064954]
本稿ではFLEX(FLEXible Federated Learning Framework)について紹介する。
データ配布、プライバシパラメータ、通信戦略のカスタマイズ可能な機能を提供することで、FLEXは研究者に新しいFLテクニックの革新と開発を許可する。
論文 参考訳(メタデータ) (2024-04-09T08:51:05Z) - Federated Learning for 6G: Paradigms, Taxonomy, Recent Advances and
Insights [52.024964564408]
本稿では,プロトコルスタックのすべてのレベルにわたってフェデレートラーニングを実装することの付加価値について検討する。
それは重要なFLアプリケーションを示し、ホットトピックに対処し、将来の研究と開発のための貴重な洞察と明示的なガイダンスを提供します。
我々の結論は、FLと将来の6Gの相乗効果を活用しつつ、FLがワイヤレス産業に革命をもたらす可能性を浮き彫りにすることを目的としています。
論文 参考訳(メタデータ) (2023-12-07T20:39:57Z) - Scalable Collaborative Learning via Representation Sharing [53.047460465980144]
フェデレートラーニング(FL)とスプリットラーニング(SL)は、データを(デバイス上で)プライベートにしながら協調学習を可能にする2つのフレームワークである。
FLでは、各データ保持者がモデルをローカルにトレーニングし、集約のために中央サーバにリリースする。
SLでは、クライアントは個々のカット層アクティベーション(スマッシュされたデータ)をサーバにリリースし、そのレスポンス(推論とバックの伝搬の両方)を待つ必要があります。
本研究では, クライアントがオンライン知識蒸留を通じて, 対照的な損失を生かして協調する, プライバシ保護機械学習の新しいアプローチを提案する。
論文 参考訳(メタデータ) (2022-11-20T10:49:22Z) - FLamby: Datasets and Benchmarks for Cross-Silo Federated Learning in
Realistic Healthcare Settings [51.09574369310246]
Federated Learning(FL)は、センシティブなデータを保持している複数のクライアントが協力して機械学習モデルをトレーニングできる新しいアプローチである。
本稿では,医療分野に重点を置くクロスサイロ・データセット・スイートFLambyを提案し,クロスサイロ・FLの理論と実践のギャップを埋める。
私たちのフレキシブルでモジュラーなスイートによって、研究者は簡単にデータセットをダウンロードし、結果を再現し、研究のためにさまざまなコンポーネントを再利用することができます。
論文 参考訳(メタデータ) (2022-10-10T12:17:30Z) - UniFed: All-In-One Federated Learning Platform to Unify Open-Source
Frameworks [53.20176108643942]
オープンソースフェデレートラーニング(FL)フレームワークを標準化する最初の統一プラットフォームであるUniFedを紹介します。
UniFedは、分散実験とデプロイメントのためのエンドツーエンドワークフローを合理化し、11の人気のあるオープンソースFLフレームワークを含んでいる。
機能、プライバシ保護、パフォーマンスの観点から、11の人気のあるFLフレームワークを評価し比較する。
論文 参考訳(メタデータ) (2022-07-21T05:03:04Z) - FederatedScope: A Comprehensive and Flexible Federated Learning Platform
via Message Passing [63.87056362712879]
我々は,メッセージ指向フレームワークを基盤とした,新しい総合的なフェデレート学習プラットフォームであるFederatedScopeを提案する。
手続き型フレームワークと比較して、提案されたメッセージ指向フレームワークは異種メッセージ交換を表現するのに柔軟である。
我々は、FederatedScopeの正確性と効率性を検証するために、提供された簡易かつ包括的なFLベンチマークについて一連の実験を行った。
論文 参考訳(メタデータ) (2022-04-11T11:24:21Z) - FedML: A Research Library and Benchmark for Federated Machine Learning [55.09054608875831]
フェデレート・ラーニング(Federated Learning, FL)は、機械学習の分野で急速に成長している研究分野である。
既存のFLライブラリは多様なアルゴリズム開発を適切にサポートできない。
FLアルゴリズムの開発と公正な性能比較を容易にするための,オープンな研究ライブラリとベンチマークであるFedMLを紹介する。
論文 参考訳(メタデータ) (2020-07-27T13:02:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。