Efficient and Discriminative Image Feature Extraction for Universal Image Retrieval
- URL: http://arxiv.org/abs/2409.13513v1
- Date: Fri, 20 Sep 2024 13:53:13 GMT
- Title: Efficient and Discriminative Image Feature Extraction for Universal Image Retrieval
- Authors: Morris Florek, David Tschirschwitz, Björn Barz, Volker Rodehorst,
- Abstract summary: We develop a framework for a universal feature extractor that provides strong semantic image representations across various domains.
We achieve near state-of-the-art results on the Google Universal Image Embedding Challenge, with a mMP@5 of 0.721.
Compared to methods with similar computational requirements, we outperform the previous state of the art by 3.3 percentage points.
- Score: 1.907072234794597
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Current image retrieval systems often face domain specificity and generalization issues. This study aims to overcome these limitations by developing a computationally efficient training framework for a universal feature extractor that provides strong semantic image representations across various domains. To this end, we curated a multi-domain training dataset, called M4D-35k, which allows for resource-efficient training. Additionally, we conduct an extensive evaluation and comparison of various state-of-the-art visual-semantic foundation models and margin-based metric learning loss functions regarding their suitability for efficient universal feature extraction. Despite constrained computational resources, we achieve near state-of-the-art results on the Google Universal Image Embedding Challenge, with a mMP@5 of 0.721. This places our method at the second rank on the leaderboard, just 0.7 percentage points behind the best performing method. However, our model has 32% fewer overall parameters and 289 times fewer trainable parameters. Compared to methods with similar computational requirements, we outperform the previous state of the art by 3.3 percentage points. We release our code and M4D-35k training set annotations at https://github.com/morrisfl/UniFEx.
Related papers
- Enhancing Few-Shot Image Classification through Learnable Multi-Scale Embedding and Attention Mechanisms [1.1557852082644071]
In the context of few-shot classification, the goal is to train a classifier using a limited number of samples.
Traditional metric-based methods exhibit certain limitations in achieving this objective.
Our approach involves utilizing multi-output embedding network that maps samples into distinct feature spaces.
arXiv Detail & Related papers (2024-09-12T12:34:29Z) - ELIP: Efficient Language-Image Pre-training with Fewer Vision Tokens [75.09406436851445]
We propose a vision token pruning and merging method ELIP, to remove less influential tokens based on the supervision of language outputs.
Our experiments demonstrate that with the removal of 30$%$ vision tokens across 12 ViT layers, ELIP maintains significantly comparable performance.
arXiv Detail & Related papers (2023-09-28T05:31:07Z) - Sample Less, Learn More: Efficient Action Recognition via Frame Feature
Restoration [59.6021678234829]
We propose a novel method to restore the intermediate features for two sparsely sampled and adjacent video frames.
With the integration of our method, the efficiency of three commonly used baselines has been improved by over 50%, with a mere 0.5% reduction in recognition accuracy.
arXiv Detail & Related papers (2023-07-27T13:52:42Z) - Attribute-Guided Multi-Level Attention Network for Fine-Grained Fashion Retrieval [27.751399400911932]
We introduce an attribute-guided multi-level attention network (AG-MAN) for fine-grained fashion retrieval.
Specifically, we first enhance the pre-trained feature extractor to capture multi-level image embedding.
Then, we propose a classification scheme where images with the same attribute, albeit with different values, are categorized into the same class.
arXiv Detail & Related papers (2022-12-27T05:28:38Z) - AugNet: End-to-End Unsupervised Visual Representation Learning with
Image Augmentation [3.6790362352712873]
We propose AugNet, a new deep learning training paradigm to learn image features from a collection of unlabeled pictures.
Our experiments demonstrate that the method is able to represent the image in low dimensional space.
Unlike many deep-learning-based image retrieval algorithms, our approach does not require access to external annotated datasets.
arXiv Detail & Related papers (2021-06-11T09:02:30Z) - ResLT: Residual Learning for Long-tailed Recognition [64.19728932445523]
We propose a more fundamental perspective for long-tailed recognition, i.e., from the aspect of parameter space.
We design the effective residual fusion mechanism -- with one main branch optimized to recognize images from all classes, another two residual branches are gradually fused and optimized to enhance images from medium+tail classes and tail classes respectively.
We test our method on several benchmarks, i.e., long-tailed version of CIFAR-10, CIFAR-100, Places, ImageNet, and iNaturalist 2018.
arXiv Detail & Related papers (2021-01-26T08:43:50Z) - Displacement-Invariant Cost Computation for Efficient Stereo Matching [122.94051630000934]
Deep learning methods have dominated stereo matching leaderboards by yielding unprecedented disparity accuracy.
But their inference time is typically slow, on the order of seconds for a pair of 540p images.
We propose a emphdisplacement-invariant cost module to compute the matching costs without needing a 4D feature volume.
arXiv Detail & Related papers (2020-12-01T23:58:16Z) - Learning Condition Invariant Features for Retrieval-Based Localization
from 1M Images [85.81073893916414]
We develop a novel method for learning more accurate and better generalizing localization features.
On the challenging Oxford RobotCar night condition, our method outperforms the well-known triplet loss by 24.4% in localization accuracy within 5m.
arXiv Detail & Related papers (2020-08-27T14:46:22Z) - SCAN: Learning to Classify Images without Labels [73.69513783788622]
We advocate a two-step approach where feature learning and clustering are decoupled.
A self-supervised task from representation learning is employed to obtain semantically meaningful features.
We obtain promising results on ImageNet, and outperform several semi-supervised learning methods in the low-data regime.
arXiv Detail & Related papers (2020-05-25T18:12:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.