論文の概要: Certified Adversarial Robustness via Partition-based Randomized Smoothing
- arxiv url: http://arxiv.org/abs/2409.13546v1
- Date: Fri, 20 Sep 2024 14:41:47 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-07 06:41:58.233671
- Title: Certified Adversarial Robustness via Partition-based Randomized Smoothing
- Title(参考訳): 分割型ランダム化平滑化による正逆ロバスト性証明
- Authors: Hossein Goli, Farzan Farnia,
- Abstract要約: 我々は、ニューラルネットワークの信頼度を高めるために、Pixel Partitioningベースのランダム化平滑化(PPRS)手法を提案する。
提案するPPRSアルゴリズムは,加法ガウス雑音下での画像の可視性を向上させる。
- 参考スコア(独自算出の注目度): 9.054540533394926
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A reliable application of deep neural network classifiers requires robustness certificates against adversarial perturbations. Gaussian smoothing is a widely analyzed approach to certifying robustness against norm-bounded perturbations, where the certified prediction radius depends on the variance of the Gaussian noise and the confidence level of the neural net's prediction under the additive Gaussian noise. However, in application to high-dimensional image datasets, the certified radius of the plain Gaussian smoothing could be relatively small, since Gaussian noise with high variances can significantly harm the visibility of an image. In this work, we propose the Pixel Partitioning-based Randomized Smoothing (PPRS) methodology to boost the neural net's confidence score and thus the robustness radius of the certified prediction. We demonstrate that the proposed PPRS algorithm improves the visibility of the images under additive Gaussian noise. We discuss the numerical results of applying PPRS to standard computer vision datasets and neural network architectures. Our empirical findings indicate a considerable improvement in the certified accuracy and stability of the prediction model to the additive Gaussian noise in randomized smoothing.
- Abstract(参考訳): ディープニューラルネットワーク分類器の信頼性の高い応用には、敵の摂動に対する堅牢性証明が必要である。
ガウスの平滑化は、正規有界摂動に対するロバスト性を証明するための広く分析されたアプローチであり、認定された予測半径はガウスのノイズの分散と、加法的なガウスのノイズの下でのニューラルネットの予測の信頼度に依存する。
しかし、高次元画像データセットに適用した場合、高分散のガウス雑音が画像の視認性を著しく損なうため、原ガウス滑らか化の認定半径は比較的小さい可能性がある。
本稿では,Pixel Partitioningに基づくランダム化平滑化手法を提案する。
提案するPPRSアルゴリズムは,加法ガウス雑音下での画像の可視性を向上させる。
本稿では,標準的なコンピュータビジョンデータセットとニューラルネットワークアーキテクチャにPPRSを適用した数値結果について論じる。
実験により, ランダムな平滑化における付加ガウス雑音に対する予測モデルの精度と安定性が著しく向上したことが示された。
関連論文リスト
- Certifying Adapters: Enabling and Enhancing the Certification of Classifier Adversarial Robustness [21.394217131341932]
本稿では,対向ロバスト性の証明を可能にする新しい認証アダプタフレームワーク(CAF)を提案する。
CAFは、ランダムまたは復号化スムーシングに基づく手法と比較して、認証精度の向上を実現している。
アダプタのアンサンブルにより、1つの事前訓練された特徴抽出器は、様々なノイズ摂動スケールに対して防御することができる。
論文 参考訳(メタデータ) (2024-05-25T03:18:52Z) - SAR Despeckling using a Denoising Diffusion Probabilistic Model [52.25981472415249]
スペックルの存在は画像品質を劣化させ、SAR画像理解アプリケーションの性能に悪影響を及ぼす。
本稿では,SAR脱種のための拡散確率モデルであるSAR-DDPMを紹介する。
提案手法は, 最先端の切り離し法と比較して, 定量化と定性化の両面で有意な改善を実現している。
論文 参考訳(メタデータ) (2022-06-09T14:00:26Z) - Poisson2Sparse: Self-Supervised Poisson Denoising From a Single Image [34.27748767631027]
本稿では,単一画像の自己教師型学習手法を提案する。
繰り返しニューラルネットワークを用いた画像復調のための従来の反復最適化アルゴリズムを近似する。
提案手法はPSNRとSSIMの両面で最先端の手法より優れている。
論文 参考訳(メタデータ) (2022-06-04T00:08:58Z) - Guided Diffusion Model for Adversarial Purification [103.4596751105955]
敵攻撃は、様々なアルゴリズムやフレームワークでディープニューラルネットワーク(DNN)を妨害する。
本稿では,GDMP ( Guided diffusion model for purification) と呼ばれる新しい精製法を提案する。
様々なデータセットにわたる包括的実験において,提案したGDMPは,敵対的攻撃によって引き起こされた摂動を浅い範囲に減少させることを示した。
論文 参考訳(メタデータ) (2022-05-30T10:11:15Z) - Sampling-free Variational Inference for Neural Networks with
Multiplicative Activation Noise [51.080620762639434]
サンプリングフリー変動推論のための後方近似のより効率的なパラメータ化を提案する。
提案手法は,標準回帰問題に対する競合的な結果をもたらし,大規模画像分類タスクに適している。
論文 参考訳(メタデータ) (2021-03-15T16:16:18Z) - Deep Networks for Direction-of-Arrival Estimation in Low SNR [89.45026632977456]
我々は,真の配列多様体行列の変異チャネルデータから学習した畳み込みニューラルネットワーク(CNN)を導入する。
我々は低SNR体制でCNNを訓練し、すべてのSNRでDoAを予測する。
私たちの堅牢なソリューションは、ワイヤレスアレイセンサーから音響マイクロフォンやソナーまで、いくつかの分野に適用できます。
論文 参考訳(メタデータ) (2020-11-17T12:52:18Z) - Statistical Analysis of Signal-Dependent Noise: Application in Blind
Localization of Image Splicing Forgery [20.533239616846874]
本研究では,信号依存ノイズ(SDN)を局所化タスクのスプライシングに適用する。
最大後方マルコフランダムフィールド(MAP-MRF)フレームワークを構築することで、ノイズの可能性を生かし、スプリケートされた物体の異領域を明らかにする。
実験結果から,本手法は有効であり,比較ローカライゼーション性能が得られた。
論文 参考訳(メタデータ) (2020-10-30T11:53:53Z) - Consistency Regularization for Certified Robustness of Smoothed
Classifiers [89.72878906950208]
最近のランダムな平滑化技術は、最悪の$ell$-robustnessを平均ケースのロバストネスに変換することができることを示している。
その結果,スムーズな分類器の精度と信頼性の高いロバスト性とのトレードオフは,ノイズに対する予測一貫性の規則化によって大きく制御できることが判明した。
論文 参考訳(メタデータ) (2020-06-07T06:57:43Z) - RAIN: A Simple Approach for Robust and Accurate Image Classification
Networks [156.09526491791772]
既存の敵防衛手法の大部分は、予測精度を犠牲にして堅牢性を実現することが示されている。
本稿では,ロバストおよび高精度画像分類N(RAIN)と呼ぶ新しい前処理フレームワークを提案する。
RAINは入力に対してランダム化を適用して、モデルフォワード予測パスと後方勾配パスの関係を壊し、モデルロバスト性を改善する。
STL10 と ImageNet のデータセットを用いて、様々な種類の敵攻撃に対する RAIN の有効性を検証する。
論文 参考訳(メタデータ) (2020-04-24T02:03:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。