論文の概要: Improved Unet brain tumor image segmentation based on GSConv module and ECA attention mechanism
- arxiv url: http://arxiv.org/abs/2409.13626v1
- Date: Fri, 20 Sep 2024 16:35:19 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-07 06:19:44.767224
- Title: Improved Unet brain tumor image segmentation based on GSConv module and ECA attention mechanism
- Title(参考訳): GSConvモジュールとECAアテンション機構に基づくUnet脳腫瘍画像のセグメンテーションの改善
- Authors: Qiyuan Tian, Zhuoyue Wang, Xiaoling Cui,
- Abstract要約: U-Netアーキテクチャに基づく深層学習アルゴリズムである脳腫瘍に対する医用画像分割法の改良モデルについて述べる。
従来のU-Netに基づいて,医療画像分割作業におけるモデルの性能向上を目的としたGSConvモジュールとECAアテンション機構を導入する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: An improved model of medical image segmentation for brain tumor is discussed, which is a deep learning algorithm based on U-Net architecture. Based on the traditional U-Net, we introduce GSConv module and ECA attention mechanism to improve the performance of the model in medical image segmentation tasks. With these improvements, the new U-Net model is able to extract and utilize multi-scale features more efficiently while flexibly focusing on important channels, resulting in significantly improved segmentation results. During the experiment, the improved U-Net model is trained and evaluated systematically. By looking at the loss curves of the training set and the test set, we find that the loss values of both rapidly decline to the lowest point after the eighth epoch, and then gradually converge and stabilize. This shows that our model has good learning ability and generalization ability. In addition, by monitoring the change in the mean intersection ratio (mIoU), we can see that after the 35th epoch, the mIoU gradually approaches 0.8 and remains stable, which further validates the model. Compared with the traditional U-Net, the improved version based on GSConv module and ECA attention mechanism shows obvious advantages in segmentation effect. Especially in the processing of brain tumor image edges, the improved model can provide more accurate segmentation results. This achievement not only improves the accuracy of medical image analysis, but also provides more reliable technical support for clinical diagnosis.
- Abstract(参考訳): U-Netアーキテクチャに基づく深層学習アルゴリズムである脳腫瘍に対する医用画像分割法の改良モデルについて述べる。
従来のU-Netに基づいて,医療画像分割作業におけるモデルの性能向上を目的としたGSConvモジュールとECAアテンション機構を導入する。
これらの改良により、新しいU-Netモデルは、重要なチャネルに柔軟に集中しながら、より効率的なマルチスケール機能の抽出と活用が可能となり、セグメンテーション結果が大幅に改善される。
実験中、改良されたU-Netモデルを訓練し、体系的に評価する。
トレーニングセットとテストセットの損失曲線を調べた結果,2つの損失値が8世紀以降の最低点まで急速に減少し,徐々に収束し,安定することがわかった。
これは、我々のモデルが優れた学習能力と一般化能力を持っていることを示している。
さらに, 平均交点比 (mIoU) の変化を観測した結果, 平均交点比 (mIoU) は35世紀以降徐々に0.8に近づき, 安定に保たれていることがわかった。
従来のU-Netと比較して、GSConvモジュールとECAアテンション機構に基づく改良版は、セグメンテーション効果の明らかな利点を示している。
特に脳腫瘍画像エッジの処理において、改良されたモデルによりより正確なセグメンテーション結果が得られる。
この成果は、医用画像解析の精度を向上するだけでなく、より信頼性の高い臨床診断支援も提供する。
関連論文リスト
- Improved Unet model for brain tumor image segmentation based on ASPP-coordinate attention mechanism [9.496880456126709]
脳腫瘍画像分割のための改良されたUnetモデルを提案する。
座標注意機構とASPPモジュールを組み合わせてセグメンテーション効果を改善する。
従来のUnetと比較して、拡張モデルはセグメンテーションとエッジ精度が優れている。
論文 参考訳(メタデータ) (2024-09-13T07:08:48Z) - CU-Net: a U-Net architecture for efficient brain-tumor segmentation on BraTS 2019 dataset [0.0]
そこで本研究では,BraTS 2019データセットを用いた脳腫瘍セグメンテーションのためのColumbia-University-Netアーキテクチャの新たな実装を提案する。
CU-Netモデルは対称なU字型構造を持ち、畳み込み層、最大プーリング、アップサンプリング演算を用いて高分解能セグメンテーションを実現する。
論文 参考訳(メタデータ) (2024-06-19T00:01:01Z) - Optimizing Universal Lesion Segmentation: State Space Model-Guided Hierarchical Networks with Feature Importance Adjustment [0.0]
我々は,MAMBAフレームワークにステートスペースモデル(SSM)とアドバンスト階層ネットワーク(AHNet)を統合したMamba-Ahnetを紹介する。
Mamba-Ahnetは、SSMの特徴抽出と理解をAHNetの注意機構と画像再構成と組み合わせ、セグメンテーションの精度と堅牢性を高めることを目的としている。
論文 参考訳(メタデータ) (2024-04-26T08:15:43Z) - Dual-scale Enhanced and Cross-generative Consistency Learning for Semi-supervised Medical Image Segmentation [49.57907601086494]
医用画像のセグメンテーションはコンピュータ支援診断において重要な役割を担っている。
半教師型医用画像(DEC-Seg)のための新しいDual-scale Enhanced and Cross-generative consistency learning frameworkを提案する。
論文 参考訳(メタデータ) (2023-12-26T12:56:31Z) - 3D Medical Image Segmentation based on multi-scale MPU-Net [5.393743755706745]
本稿では,患者のCT画像に対する腫瘍分割モデルMPU-Netを提案する。
グローバルアテンション機構を備えたTransformerにインスパイアされている。
ベンチマークモデルであるU-Netと比較して、MPU-Netは優れたセグメンテーション結果を示す。
論文 参考訳(メタデータ) (2023-07-11T20:46:19Z) - ARHNet: Adaptive Region Harmonization for Lesion-aware Augmentation to
Improve Segmentation Performance [61.04246102067351]
本研究では,合成画像をよりリアルに見せるために,前景調和フレームワーク(ARHNet)を提案する。
実画像と合成画像を用いたセグメンテーション性能の向上に本手法の有効性を実証する。
論文 参考訳(メタデータ) (2023-07-02T10:39:29Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
本稿では,信頼性の高いマルチスケールウェーブレットエンハンストランスネットワークを提案する。
本研究では,ウェーブレット型特徴抽出器ネットワークとマルチスケール変圧器モジュールを統合したセグメンテーションバックボーンを開発した。
提案手法は,他の最先端セグメンテーション手法と比較して信頼性の高いセグメンテーション精度を実現する。
論文 参考訳(メタデータ) (2022-12-01T07:32:56Z) - Performance or Trust? Why Not Both. Deep AUC Maximization with
Self-Supervised Learning for COVID-19 Chest X-ray Classifications [72.52228843498193]
ディープラーニングモデルのトレーニングでは、パフォーマンスと信頼の間に妥協をしなければなりません。
本研究は、新型コロナウイルス患者のコンピュータ支援スクリーニングのための自己教師型学習と新しい代理損失を統合したものである。
論文 参考訳(メタデータ) (2021-12-14T21:16:52Z) - RCA-IUnet: A residual cross-spatial attention guided inception U-Net
model for tumor segmentation in breast ultrasound imaging [0.6091702876917281]
本稿では,腫瘍セグメンテーションのトレーニングパラメータが最小限に抑えられたRCA-IUnetモデルについて紹介する。
RCA-IUnetモデルは、U-Netトポロジに従い、奥行きの深い分離可能な畳み込みとハイブリッドプール層を持つ。
無関係な特徴を抑え、対象構造に焦点を合わせるために、空間横断型アテンションフィルタが加えられる。
論文 参考訳(メタデータ) (2021-08-05T10:35:06Z) - On the Robustness of Pretraining and Self-Supervision for a Deep
Learning-based Analysis of Diabetic Retinopathy [70.71457102672545]
糖尿病網膜症における訓練方法の違いによる影響を比較検討した。
本稿では,定量的性能,学習した特徴表現の統計,解釈可能性,画像歪みに対する頑健性など,さまざまな側面について検討する。
以上の結果から,ImageNet事前学習モデルでは,画像歪みに対する性能,一般化,堅牢性が著しく向上していることが示唆された。
論文 参考訳(メタデータ) (2021-06-25T08:32:45Z) - An Uncertainty-Driven GCN Refinement Strategy for Organ Segmentation [53.425900196763756]
本研究では,不確実性解析とグラフ畳み込みネットワークに基づくセグメンテーション改善手法を提案する。
半教師付きグラフ学習問題を定式化するために、特定の入力ボリュームにおける畳み込みネットワークの不確実性レベルを用いる。
本手法は膵臓で1%,脾臓で2%向上し,最先端のCRF改善法よりも優れていた。
論文 参考訳(メタデータ) (2020-12-06T18:55:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。