Explainable Malware Analysis: Concepts, Approaches and Challenges
- URL: http://arxiv.org/abs/2409.13723v1
- Date: Mon, 9 Sep 2024 08:19:33 GMT
- Title: Explainable Malware Analysis: Concepts, Approaches and Challenges
- Authors: Harikha Manthena, Shaghayegh Shajarian, Jeffrey Kimmell, Mahmoud Abdelsalam, Sajad Khorsandroo, Maanak Gupta,
- Abstract summary: We review the current state-of-the-art ML-based malware detection techniques and popular XAI approaches.
We discuss research implementations and the challenges of explainable malware analysis.
This theoretical survey serves as an entry point for researchers interested in XAI applications in malware detection.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine learning (ML) has seen exponential growth in recent years, finding applications in various domains such as finance, medicine, and cybersecurity. Malware remains a significant threat to modern computing, frequently used by attackers to compromise systems. While numerous machine learning-based approaches for malware detection achieve high performance, they often lack transparency and fail to explain their predictions. This is a critical drawback in malware analysis, where understanding the rationale behind detections is essential for security analysts to verify and disseminate information. Explainable AI (XAI) addresses this issue by maintaining high accuracy while producing models that provide clear, understandable explanations for their decisions. In this survey, we comprehensively review the current state-of-the-art ML-based malware detection techniques and popular XAI approaches. Additionally, we discuss research implementations and the challenges of explainable malware analysis. This theoretical survey serves as an entry point for researchers interested in XAI applications in malware detection. By analyzing recent advancements in explainable malware analysis, we offer a broad overview of the progress in this field, positioning our work as the first to extensively cover XAI methods for malware classification and detection.
Related papers
- MASKDROID: Robust Android Malware Detection with Masked Graph Representations [56.09270390096083]
We propose MASKDROID, a powerful detector with a strong discriminative ability to identify malware.
We introduce a masking mechanism into the Graph Neural Network based framework, forcing MASKDROID to recover the whole input graph.
This strategy enables the model to understand the malicious semantics and learn more stable representations, enhancing its robustness against adversarial attacks.
arXiv Detail & Related papers (2024-09-29T07:22:47Z) - Progressing from Anomaly Detection to Automated Log Labeling and
Pioneering Root Cause Analysis [53.24804865821692]
This study introduces a taxonomy for log anomalies and explores automated data labeling to mitigate labeling challenges.
The study envisions a future where root cause analysis follows anomaly detection, unraveling the underlying triggers of anomalies.
arXiv Detail & Related papers (2023-12-22T15:04:20Z) - Malware Analysis on AI Technique [0.0]
Therefore, Malware analysis is needed in order to secure the system.
Due to the cheap cost of technology, artificial intelligence has also become less difficult to implement in projects to analyse malware.
The categorization and analysis of malware on OS using various AI-based analysis techniques are covered in this paper.
arXiv Detail & Related papers (2023-11-24T14:16:59Z) - A survey on hardware-based malware detection approaches [45.24207460381396]
Hardware-based malware detection approaches leverage hardware performance counters and machine learning prowess.
We meticulously analyze the approach, unraveling the most common methods, algorithms, tools, and datasets that shape its contours.
The discussion extends to crafting mixed hardware and software approaches for collaborative efficacy, essential enhancements in hardware monitoring units, and a better understanding of the correlation between hardware events and malware applications.
arXiv Detail & Related papers (2023-03-22T13:00:41Z) - Harnessing the Speed and Accuracy of Machine Learning to Advance Cybersecurity [0.0]
Traditional signature-based methods of malware detection have limitations in detecting complex threats.
In recent years, machine learning has emerged as a promising solution to detect malware effectively.
ML algorithms are capable of analyzing large datasets and identifying patterns that are difficult for humans to identify.
arXiv Detail & Related papers (2023-02-24T02:42:38Z) - Towards a Fair Comparison and Realistic Design and Evaluation Framework
of Android Malware Detectors [63.75363908696257]
We analyze 10 influential research works on Android malware detection using a common evaluation framework.
We identify five factors that, if not taken into account when creating datasets and designing detectors, significantly affect the trained ML models.
We conclude that the studied ML-based detectors have been evaluated optimistically, which justifies the good published results.
arXiv Detail & Related papers (2022-05-25T08:28:08Z) - ML-based IoT Malware Detection Under Adversarial Settings: A Systematic
Evaluation [9.143713488498513]
This work systematically examines the state-of-the-art malware detection approaches, that utilize various representation and learning techniques.
We show that software mutations with functionality-preserving operations, such as stripping and padding, significantly deteriorate the accuracy of such detectors.
arXiv Detail & Related papers (2021-08-30T16:54:07Z) - Inspect, Understand, Overcome: A Survey of Practical Methods for AI
Safety [54.478842696269304]
The use of deep neural networks (DNNs) in safety-critical applications is challenging due to numerous model-inherent shortcomings.
In recent years, a zoo of state-of-the-art techniques aiming to address these safety concerns has emerged.
Our paper addresses both machine learning experts and safety engineers.
arXiv Detail & Related papers (2021-04-29T09:54:54Z) - Towards interpreting ML-based automated malware detection models: a
survey [4.721069729610892]
Most of the existing machine learning models are black-box, which made their pre-diction results undependable.
This paper aims to examine and categorize the existing researches on ML-based malware detector interpretability.
arXiv Detail & Related papers (2021-01-15T17:34:40Z) - Dos and Don'ts of Machine Learning in Computer Security [74.1816306998445]
Despite great potential, machine learning in security is prone to subtle pitfalls that undermine its performance.
We identify common pitfalls in the design, implementation, and evaluation of learning-based security systems.
We propose actionable recommendations to support researchers in avoiding or mitigating the pitfalls where possible.
arXiv Detail & Related papers (2020-10-19T13:09:31Z) - Interpreting Machine Learning Malware Detectors Which Leverage N-gram
Analysis [2.6397379133308214]
cybersecurity analysts always prefer solutions that are as interpretable and understandable as rule-based or signature-based detection.
The objective of this paper is to evaluate the current state-of-the-art ML models interpretability techniques when applied to ML-based malware detectors.
arXiv Detail & Related papers (2020-01-27T19:10:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.