Progressing from Anomaly Detection to Automated Log Labeling and
Pioneering Root Cause Analysis
- URL: http://arxiv.org/abs/2312.14748v1
- Date: Fri, 22 Dec 2023 15:04:20 GMT
- Title: Progressing from Anomaly Detection to Automated Log Labeling and
Pioneering Root Cause Analysis
- Authors: Thorsten Wittkopp, Alexander Acker, Odej Kao
- Abstract summary: This study introduces a taxonomy for log anomalies and explores automated data labeling to mitigate labeling challenges.
The study envisions a future where root cause analysis follows anomaly detection, unraveling the underlying triggers of anomalies.
- Score: 53.24804865821692
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The realm of AIOps is transforming IT landscapes with the power of AI and ML.
Despite the challenge of limited labeled data, supervised models show promise,
emphasizing the importance of leveraging labels for training, especially in
deep learning contexts. This study enhances the field by introducing a taxonomy
for log anomalies and exploring automated data labeling to mitigate labeling
challenges. It goes further by investigating the potential of diverse anomaly
detection techniques and their alignment with specific anomaly types. However,
the exploration doesn't stop at anomaly detection. The study envisions a future
where root cause analysis follows anomaly detection, unraveling the underlying
triggers of anomalies. This uncharted territory holds immense potential for
revolutionizing IT systems management. In essence, this paper enriches our
understanding of anomaly detection, and automated labeling, and sets the stage
for transformative root cause analysis. Together, these advances promise more
resilient IT systems, elevating operational efficiency and user satisfaction in
an ever-evolving technological landscape.
Related papers
- ADT: Agent-based Dynamic Thresholding for Anomaly Detection [4.356615197661274]
We propose an agent-based dynamic thresholding (ADT) framework based on a deep Q-network.
An auto-encoder is utilized in this study to obtain feature representations and produce anomaly scores for complex input data.
ADT can adjust thresholds adaptively by utilizing the anomaly scores from the auto-encoder.
arXiv Detail & Related papers (2023-12-03T19:07:30Z) - Unraveling the "Anomaly" in Time Series Anomaly Detection: A
Self-supervised Tri-domain Solution [89.16750999704969]
Anomaly labels hinder traditional supervised models in time series anomaly detection.
Various SOTA deep learning techniques, such as self-supervised learning, have been introduced to tackle this issue.
We propose a novel self-supervised learning based Tri-domain Anomaly Detector (TriAD)
arXiv Detail & Related papers (2023-11-19T05:37:18Z) - Unsupervised deep learning techniques for powdery mildew recognition
based on multispectral imaging [63.62764375279861]
This paper presents a deep learning approach to automatically recognize powdery mildew on cucumber leaves.
We focus on unsupervised deep learning techniques applied to multispectral imaging data.
We propose the use of autoencoder architectures to investigate two strategies for disease detection.
arXiv Detail & Related papers (2021-12-20T13:29:13Z) - A Taxonomy of Anomalies in Log Data [0.09558392439655014]
A common taxonomy for anomalies already exists, but it has not yet been applied specifically to log data.
We present a taxonomy for different kinds of log data anomalies and introduce a method for analyzing such anomalies in labeled datasets.
Our results show, that the most common anomaly type is also the easiest to predict.
arXiv Detail & Related papers (2021-11-26T12:23:06Z) - SLA$^2$P: Self-supervised Anomaly Detection with Adversarial
Perturbation [77.71161225100927]
Anomaly detection is a fundamental yet challenging problem in machine learning.
We propose a novel and powerful framework, dubbed as SLA$2$P, for unsupervised anomaly detection.
arXiv Detail & Related papers (2021-11-25T03:53:43Z) - How Can Subgroup Discovery Help AIOps? [0.0]
We study how Subgroup Discovery can help AIOps.
This project involves both data mining researchers and practitioners from Infologic, a French software editor.
arXiv Detail & Related papers (2021-09-10T14:41:02Z) - DAE : Discriminatory Auto-Encoder for multivariate time-series anomaly
detection in air transportation [68.8204255655161]
We propose a novel anomaly detection model called Discriminatory Auto-Encoder (DAE)
It uses the baseline of a regular LSTM-based auto-encoder but with several decoders, each getting data of a specific flight phase.
Results show that the DAE achieves better results in both accuracy and speed of detection.
arXiv Detail & Related papers (2021-09-08T14:07:55Z) - A Survey on Anomaly Detection for Technical Systems using LSTM Networks [0.0]
Anomalies represent deviations from the intended system operation and can lead to decreased efficiency as well as partial or complete system failure.
In this article, a survey on state-of-the-art anomaly detection using deep neural and especially long short-term memory networks is conducted.
The investigated approaches are evaluated based on the application scenario, data and anomaly types as well as further metrics.
arXiv Detail & Related papers (2021-05-28T13:24:40Z) - TELESTO: A Graph Neural Network Model for Anomaly Classification in
Cloud Services [77.454688257702]
Machine learning (ML) and artificial intelligence (AI) are applied on IT system operation and maintenance.
One direction aims at the recognition of re-occurring anomaly types to enable remediation automation.
We propose a method that is invariant to dimensionality changes of given data.
arXiv Detail & Related papers (2021-02-25T14:24:49Z) - Smart Anomaly Detection in Sensor Systems: A Multi-Perspective Review [0.0]
Anomaly detection is concerned with identifying data patterns that deviate remarkably from the expected behaviour.
This is an important research problem, due to its broad set of application domains, from data analysis to e-health, cybersecurity, predictive maintenance, fault prevention, and industrial automation.
We review state-of-the-art methods that may be employed to detect anomalies in the specific area of sensor systems.
arXiv Detail & Related papers (2020-10-27T09:56:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.