Revisiting Synthetic Human Trajectories: Imitative Generation and Benchmarks Beyond Datasaurus
- URL: http://arxiv.org/abs/2409.13790v1
- Date: Fri, 20 Sep 2024 09:07:27 GMT
- Title: Revisiting Synthetic Human Trajectories: Imitative Generation and Benchmarks Beyond Datasaurus
- Authors: Bangchao Deng, Xin Jing, Tianyue Yang, Bingqing Qu, Philippe Cudre-Mauroux, Dingqi Yang,
- Abstract summary: Human trajectory data is challenging to obtain due to practical constraints and privacy concerns.
We propose MIRAGE, a huMan-Imitative tRAjectory GenErative model designed as a neural Temporal Point Process.
We conduct a thorough evaluation of MIRAGE on three real-world user trajectory datasets against a sizeable collection of baselines.
- Score: 4.522142161017109
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Human trajectory data, which plays a crucial role in various applications such as crowd management and epidemic prevention, is challenging to obtain due to practical constraints and privacy concerns. In this context, synthetic human trajectory data is generated to simulate as close as possible to real-world human trajectories, often under summary statistics and distributional similarities. However, the complexity of human mobility patterns is oversimplified by these similarities (a.k.a. ``Datasaurus''), resulting in intrinsic biases in both generative model design and benchmarks of the generated trajectories. Against this background, we propose MIRAGE, a huMan-Imitative tRAjectory GenErative model designed as a neural Temporal Point Process integrating an Exploration and Preferential Return model. It imitates the human decision-making process in trajectory generation, rather than fitting any specific statistical distributions as traditional methods do, thus avoiding the Datasaurus issue. Moreover, we also propose a comprehensive task-based evaluation protocol beyond Datasaurus to systematically benchmark trajectory generative models on four typical downstream tasks, integrating multiple techniques and evaluation metrics for each task, to comprehensively assess the ultimate utility of the generated trajectories. We conduct a thorough evaluation of MIRAGE on three real-world user trajectory datasets against a sizeable collection of baselines. Results show that compared to the best baselines, MIRAGE-generated trajectory data not only achieves the best statistical and distributional similarities with 59.0-71.5% improvement, but also yields the best performance in the task-based evaluation with 10.9-33.4% improvement.
Related papers
- Testing Generalizability in Causal Inference [3.547529079746247]
There is no formal procedure for statistically evaluating generalizability in machine learning algorithms.
We propose a systematic and quantitative framework for evaluating model generalizability in causal inference settings.
By basing simulations on real data, our method ensures more realistic evaluations, which is often missing in current work.
arXiv Detail & Related papers (2024-11-05T11:44:00Z) - Weak Reward Model Transforms Generative Models into Robust Causal Event Extraction Systems [17.10762463903638]
We train evaluation models to approximate human evaluation, achieving high agreement.
We propose a weak-to-strong supervision method that uses a fraction of the annotated data to train an evaluation model.
arXiv Detail & Related papers (2024-06-26T10:48:14Z) - Efficient Transferability Assessment for Selection of Pre-trained Detectors [63.21514888618542]
This paper studies the efficient transferability assessment of pre-trained object detectors.
We build up a detector transferability benchmark which contains a large and diverse zoo of pre-trained detectors.
Experimental results demonstrate that our method outperforms other state-of-the-art approaches in assessing transferability.
arXiv Detail & Related papers (2024-03-14T14:23:23Z) - Towards Theoretical Understandings of Self-Consuming Generative Models [56.84592466204185]
This paper tackles the emerging challenge of training generative models within a self-consuming loop.
We construct a theoretical framework to rigorously evaluate how this training procedure impacts the data distributions learned by future models.
We present results for kernel density estimation, delivering nuanced insights such as the impact of mixed data training on error propagation.
arXiv Detail & Related papers (2024-02-19T02:08:09Z) - Improving Transferability for Cross-domain Trajectory Prediction via
Neural Stochastic Differential Equation [41.09061877498741]
discrepancies exist among datasets due to external factors and data acquisition strategies.
The proficient performance of models trained on large-scale datasets has limited transferability on other small-size datasets.
We propose a method based on continuous and utilization of Neural Differential Equations (NSDE) for alleviating discrepancies.
The effectiveness of our method is validated against state-of-the-art trajectory prediction models on the popular benchmark datasets: nuScenes, Argoverse, Lyft, INTERACTION, and Open Motion dataset.
arXiv Detail & Related papers (2023-12-26T06:50:29Z) - Federated Learning with Projected Trajectory Regularization [65.6266768678291]
Federated learning enables joint training of machine learning models from distributed clients without sharing their local data.
One key challenge in federated learning is to handle non-identically distributed data across the clients.
We propose a novel federated learning framework with projected trajectory regularization (FedPTR) for tackling the data issue.
arXiv Detail & Related papers (2023-12-22T02:12:08Z) - JRDB-Traj: A Dataset and Benchmark for Trajectory Forecasting in Crowds [79.00975648564483]
Trajectory forecasting models, employed in fields such as robotics, autonomous vehicles, and navigation, face challenges in real-world scenarios.
This dataset provides comprehensive data, including the locations of all agents, scene images, and point clouds, all from the robot's perspective.
The objective is to predict the future positions of agents relative to the robot using raw sensory input data.
arXiv Detail & Related papers (2023-11-05T18:59:31Z) - Time-series Generation by Contrastive Imitation [87.51882102248395]
We study a generative framework that seeks to combine the strengths of both: Motivated by a moment-matching objective to mitigate compounding error, we optimize a local (but forward-looking) transition policy.
At inference, the learned policy serves as the generator for iterative sampling, and the learned energy serves as a trajectory-level measure for evaluating sample quality.
arXiv Detail & Related papers (2023-11-02T16:45:25Z) - Human Trajectory Forecasting in Crowds: A Deep Learning Perspective [89.4600982169]
We present an in-depth analysis of existing deep learning-based methods for modelling social interactions.
We propose two knowledge-based data-driven methods to effectively capture these social interactions.
We develop a large scale interaction-centric benchmark TrajNet++, a significant yet missing component in the field of human trajectory forecasting.
arXiv Detail & Related papers (2020-07-07T17:19:56Z) - LSTM-TrajGAN: A Deep Learning Approach to Trajectory Privacy Protection [2.1793134762413437]
We propose an end-to-end deep learning model to generate privacy-preserving synthetic trajectory data for data sharing and publication.
The model is evaluated on the trajectory-user-linking task on a real-world semantic trajectory dataset.
arXiv Detail & Related papers (2020-06-14T03:04:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.