Intrinsic Single-Image HDR Reconstruction
- URL: http://arxiv.org/abs/2409.13803v1
- Date: Fri, 20 Sep 2024 17:56:51 GMT
- Title: Intrinsic Single-Image HDR Reconstruction
- Authors: Sebastian Dille, Chris Careaga, Yağız Aksoy,
- Abstract summary: We introduce a physically-inspired remodeling of the HDR reconstruction problem in the intrinsic domain.
We show that dividing the problem into two simpler sub-tasks improves performance in a wide variety of photographs.
- Score: 0.6554326244334868
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The low dynamic range (LDR) of common cameras fails to capture the rich contrast in natural scenes, resulting in loss of color and details in saturated pixels. Reconstructing the high dynamic range (HDR) of luminance present in the scene from single LDR photographs is an important task with many applications in computational photography and realistic display of images. The HDR reconstruction task aims to infer the lost details using the context present in the scene, requiring neural networks to understand high-level geometric and illumination cues. This makes it challenging for data-driven algorithms to generate accurate and high-resolution results. In this work, we introduce a physically-inspired remodeling of the HDR reconstruction problem in the intrinsic domain. The intrinsic model allows us to train separate networks to extend the dynamic range in the shading domain and to recover lost color details in the albedo domain. We show that dividing the problem into two simpler sub-tasks improves performance in a wide variety of photographs.
Related papers
- Towards High-quality HDR Deghosting with Conditional Diffusion Models [88.83729417524823]
High Dynamic Range (LDR) images can be recovered from several Low Dynamic Range (LDR) images by existing Deep Neural Networks (DNNs) techniques.
DNNs still generate ghosting artifacts when LDR images have saturation and large motion.
We formulate the HDR deghosting problem as an image generation that leverages LDR features as the diffusion model's condition.
arXiv Detail & Related papers (2023-11-02T01:53:55Z) - Self-Supervised High Dynamic Range Imaging with Multi-Exposure Images in
Dynamic Scenes [58.66427721308464]
Self is a self-supervised reconstruction method that only requires dynamic multi-exposure images during training.
Self achieves superior results against the state-of-the-art self-supervised methods, and comparable performance to supervised ones.
arXiv Detail & Related papers (2023-10-03T07:10:49Z) - Single Image LDR to HDR Conversion using Conditional Diffusion [18.466814193413487]
Digital imaging aims to replicate realistic scenes, but Low Dynamic Range (LDR) cameras cannot represent the wide dynamic range of real scenes.
This paper presents a deep learning-based approach for recovering intricate details from shadows and highlights.
We incorporate a deep-based autoencoder in our proposed framework to enhance the quality of the latent representation of LDR image used for conditioning.
arXiv Detail & Related papers (2023-07-06T07:19:47Z) - GlowGAN: Unsupervised Learning of HDR Images from LDR Images in the Wild [74.52723408793648]
We present the first method for learning a generative model of HDR images from in-the-wild LDR image collections in a fully unsupervised manner.
The key idea is to train a generative adversarial network (GAN) to generate HDR images which, when projected to LDR under various exposures, are indistinguishable from real LDR images.
Experiments show that our method GlowGAN can synthesize photorealistic HDR images in many challenging cases such as landscapes, lightning, or windows.
arXiv Detail & Related papers (2022-11-22T15:42:08Z) - Deep Progressive Feature Aggregation Network for High Dynamic Range
Imaging [24.94466716276423]
We propose a deep progressive feature aggregation network for improving HDR imaging quality in dynamic scenes.
Our method implicitly samples high-correspondence features and aggregates them in a coarse-to-fine manner for alignment.
Experiments show that our proposed method can achieve state-of-the-art performance under different scenes.
arXiv Detail & Related papers (2022-08-04T04:37:35Z) - High Dynamic Range and Super-Resolution from Raw Image Bursts [52.341483902624006]
This paper introduces the first approach to reconstruct high-resolution, high-dynamic range color images from raw photographic bursts captured by a handheld camera with exposure bracketing.
The proposed algorithm is fast, with low memory requirements compared to state-of-the-art learning-based approaches to image restoration.
Experiments demonstrate its excellent performance with super-resolution factors of up to $times 4$ on real photographs taken in the wild with hand-held cameras.
arXiv Detail & Related papers (2022-07-29T13:31:28Z) - HDR-cGAN: Single LDR to HDR Image Translation using Conditional GAN [24.299931323012757]
Low Dynamic Range (LDR) cameras are incapable of representing the wide dynamic range of the real-world scene.
We propose a deep learning based approach to recover details in the saturated areas while reconstructing the HDR image.
We present a novel conditional GAN (cGAN) based framework trained in an end-to-end fashion over the HDR-REAL and HDR-SYNTH datasets.
arXiv Detail & Related papers (2021-10-04T18:50:35Z) - HDRUNet: Single Image HDR Reconstruction with Denoising and
Dequantization [39.82945546614887]
We propose a novel learning-based approach using a spatially dynamic encoder-decoder network, HDRUNet, to learn an end-to-end mapping for single image HDR reconstruction.
Our method achieves the state-of-the-art performance in quantitative comparisons and visual quality.
arXiv Detail & Related papers (2021-05-27T12:12:34Z) - HDR-GAN: HDR Image Reconstruction from Multi-Exposed LDR Images with
Large Motions [62.44802076971331]
We propose a novel GAN-based model, HDR-GAN, for synthesizing HDR images from multi-exposed LDR images.
By incorporating adversarial learning, our method is able to produce faithful information in the regions with missing content.
arXiv Detail & Related papers (2020-07-03T11:42:35Z) - Single-Image HDR Reconstruction by Learning to Reverse the Camera
Pipeline [100.5353614588565]
We propose to incorporate the domain knowledge of the LDR image formation pipeline into our model.
We model the HDRto-LDR image formation pipeline as the (1) dynamic range clipping, (2) non-linear mapping from a camera response function, and (3) quantization.
We demonstrate that the proposed method performs favorably against state-of-the-art single-image HDR reconstruction algorithms.
arXiv Detail & Related papers (2020-04-02T17:59:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.