Fermion and Boson Pairs in Beamsplitters and MZIs
- URL: http://arxiv.org/abs/2409.13835v2
- Date: Fri, 25 Oct 2024 15:45:20 GMT
- Title: Fermion and Boson Pairs in Beamsplitters and MZIs
- Authors: Jonte R. Hance,
- Abstract summary: We look at the behaviour of first multiple fermions, then multiple bosons, at a beamsplitter.
We then describe the behaviour of multiple fermions and multiple bosons in Mach-Zehnder interferometers.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this short Topical Review, we look at something typically considered trivial, but not given formally elsewhere -- the behaviour of first multiple fermions, then multiple bosons, at a beamsplitter. Extending from this, we then describe the behaviour of multiple fermions and multiple bosons in Mach-Zehnder interferometers (MZIs). We hope that by showing how to go from mathematically-simple but unintuitive quantum field theory to a phenomenological description, this Review will help both researchers and students build a stronger intuition for the behaviour of quantum particles.
Related papers
- Antiparticles in non-relativistic quantum mechanics [55.2480439325792]
Non-relativistic quantum mechanics was originally formulated to describe particles.
We show how the concept of antiparticles can and should be introduced in the non-relativistic case without appealing to quantum field theory.
arXiv Detail & Related papers (2024-04-02T09:16:18Z) - Bound state of distant photons in waveguide quantum electrodynamics [137.6408511310322]
Quantum correlations between distant particles remain enigmatic since the birth of quantum mechanics.
We predict a novel kind of bound quantum state in the simplest one-dimensional setup of two interacting particles in a box.
Such states could be realized in the waveguide quantum electrodynamics platform.
arXiv Detail & Related papers (2023-03-17T09:27:02Z) - Symmetry Resolved Entanglement of Excited States in Quantum Field Theory
III: Bosonic and Fermionic Negativity [0.0]
We study the resolved R'enyi entropies of quasi-particle excited states in quantum field theory.
We compute the ratio of charged moments of the partially transposed reduced density matrix as an expectation value of twist operators.
We find that although the operation of partial transposition requires a redefinition for fermionic theories, the ratio of the negativity moments between an excited state and the ground state is universal and identical for fermions and bosons.
arXiv Detail & Related papers (2023-02-06T10:05:58Z) - Composite-boson formalism applied to strongly bound fermion pairs in a
one-dimensional trap [0.0]
We solve the problem of two fermion pairs numerically using the so-called ''coboson formalism''
This allows us to explore the strongly bound regime, approaching the limit of infinite attraction in which the composite particles behave as hard-core bosons.
arXiv Detail & Related papers (2023-01-09T19:20:00Z) - Duality between weak and strong interactions in quantum gases [0.0]
No exact duality connecting strongly interacting bosons to weakly interacting fermions is known.
Our derivation relies on regularizing the only point-like interaction between fermions in 1D.
This allows one to apply standard methods of diagrammatic theory to strongly interacting bosons.
arXiv Detail & Related papers (2021-09-17T16:12:28Z) - Photon-mediated Stroboscopic Quantum Simulation of a $\mathbb{Z}_{2}$
Lattice Gauge Theory [58.720142291102135]
Quantum simulation of lattice gauge theories (LGTs) aims at tackling non-perturbative particle and condensed matter physics.
One of the current challenges is to go beyond 1+1 dimensions, where four-body (plaquette) interactions, not contained naturally in quantum simulating devices, appear.
We show how to prepare the ground state and measure Wilson loops using state-of-the-art techniques in atomic physics.
arXiv Detail & Related papers (2021-07-27T18:10:08Z) - Cold atoms meet lattice gauge theory [72.24363031615489]
We will consider quantum field theory models relevant for particle physics and replace the fermionic matter in these models by a bosonic one.
This is motivated by the fact that bosons are more accessible'' and easier to manipulate for experimentalists, but this substitution'' also leads to new physics and novel phenomena.
arXiv Detail & Related papers (2021-06-06T08:53:47Z) - Quantum Register of Fermion Pairs [0.0]
Quantum simulators based on ultracold fermionic atoms directly realize paradigmatic Fermi systems.
Digital qubit-based quantum computation of fermion models faces significant challenges in implementing fermionic anti-symmetrization.
We demonstrate a robust quantum register composed of hundreds of fermionic atom pairs trapped in an optical lattice.
arXiv Detail & Related papers (2021-03-25T17:30:37Z) - Semiclassical limit for almost fermionic anyons [0.0]
Quasi-particles obeying quantum statistics can be described as bosons and fermions with magnetic interactions.
We prove that the ground state of a gas of anyons is described to leading order by a semi-classical, Vlasov-like, energy functional.
arXiv Detail & Related papers (2021-01-12T13:03:17Z) - Bloch-Landau-Zener dynamics induced by a synthetic field in a photonic
quantum walk [52.77024349608834]
We realize a photonic quantum walk in the presence of a synthetic gauge field.
We investigate intriguing system dynamics characterized by the interplay between Bloch oscillations and Landau-Zener transitions.
arXiv Detail & Related papers (2020-11-11T16:35:41Z) - Quantum Simulation of 2D Quantum Chemistry in Optical Lattices [59.89454513692418]
We propose an analog simulator for discrete 2D quantum chemistry models based on cold atoms in optical lattices.
We first analyze how to simulate simple models, like the discrete versions of H and H$+$, using a single fermionic atom.
We then show that a single bosonic atom can mediate an effective Coulomb repulsion between two fermions, leading to the analog of molecular Hydrogen in two dimensions.
arXiv Detail & Related papers (2020-02-21T16:00:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.