Persistent Backdoor Attacks in Continual Learning
- URL: http://arxiv.org/abs/2409.13864v1
- Date: Fri, 20 Sep 2024 19:28:48 GMT
- Title: Persistent Backdoor Attacks in Continual Learning
- Authors: Zhen Guo, Abhinav Kumar, Reza Tourani,
- Abstract summary: We introduce two persistent backdoor attacks-Blind Task Backdoor and Latent Task Backdoor-each leveraging minimal adversarial influence.
Our results show that both attacks consistently achieve high success rates across different continual learning algorithms, while effectively evading state-of-the-art defenses.
- Score: 5.371962853011215
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Backdoor attacks pose a significant threat to neural networks, enabling adversaries to manipulate model outputs on specific inputs, often with devastating consequences, especially in critical applications. While backdoor attacks have been studied in various contexts, little attention has been given to their practicality and persistence in continual learning, particularly in understanding how the continual updates to model parameters, as new data distributions are learned and integrated, impact the effectiveness of these attacks over time. To address this gap, we introduce two persistent backdoor attacks-Blind Task Backdoor and Latent Task Backdoor-each leveraging minimal adversarial influence. Our blind task backdoor subtly alters the loss computation without direct control over the training process, while the latent task backdoor influences only a single task's training, with all other tasks trained benignly. We evaluate these attacks under various configurations, demonstrating their efficacy with static, dynamic, physical, and semantic triggers. Our results show that both attacks consistently achieve high success rates across different continual learning algorithms, while effectively evading state-of-the-art defenses, such as SentiNet and I-BAU.
Related papers
- Efficient Backdoor Defense in Multimodal Contrastive Learning: A Token-Level Unlearning Method for Mitigating Threats [52.94388672185062]
We propose an efficient defense mechanism against backdoor threats using a concept known as machine unlearning.
This entails strategically creating a small set of poisoned samples to aid the model's rapid unlearning of backdoor vulnerabilities.
In the backdoor unlearning process, we present a novel token-based portion unlearning training regime.
arXiv Detail & Related papers (2024-09-29T02:55:38Z) - Dullahan: Stealthy Backdoor Attack against Without-Label-Sharing Split Learning [29.842087372804905]
We propose a stealthy backdoor attack strategy tailored to the without-label-sharing split learning architecture.
Our SBAT achieves a higher level of attack stealthiness by refraining from modifying any intermediate parameters during training.
arXiv Detail & Related papers (2024-05-21T13:03:06Z) - Pre-trained Trojan Attacks for Visual Recognition [106.13792185398863]
Pre-trained vision models (PVMs) have become a dominant component due to their exceptional performance when fine-tuned for downstream tasks.
We propose the Pre-trained Trojan attack, which embeds backdoors into a PVM, enabling attacks across various downstream vision tasks.
We highlight the challenges posed by cross-task activation and shortcut connections in successful backdoor attacks.
arXiv Detail & Related papers (2023-12-23T05:51:40Z) - On the Difficulty of Defending Contrastive Learning against Backdoor
Attacks [58.824074124014224]
We show how contrastive backdoor attacks operate through distinctive mechanisms.
Our findings highlight the need for defenses tailored to the specificities of contrastive backdoor attacks.
arXiv Detail & Related papers (2023-12-14T15:54:52Z) - BadCLIP: Dual-Embedding Guided Backdoor Attack on Multimodal Contrastive
Learning [85.2564206440109]
This paper reveals the threats in this practical scenario that backdoor attacks can remain effective even after defenses.
We introduce the emphtoolns attack, which is resistant to backdoor detection and model fine-tuning defenses.
arXiv Detail & Related papers (2023-11-20T02:21:49Z) - On the Effectiveness of Adversarial Training against Backdoor Attacks [111.8963365326168]
A backdoored model always predicts a target class in the presence of a predefined trigger pattern.
In general, adversarial training is believed to defend against backdoor attacks.
We propose a hybrid strategy which provides satisfactory robustness across different backdoor attacks.
arXiv Detail & Related papers (2022-02-22T02:24:46Z) - Backdoor Learning Curves: Explaining Backdoor Poisoning Beyond Influence
Functions [26.143147923356626]
We study the process of backdoor learning under the lens of incremental learning and influence functions.
We show that the success of backdoor attacks inherently depends on (i) the complexity of the learning algorithm and (ii) the fraction of backdoor samples injected into the training set.
arXiv Detail & Related papers (2021-06-14T08:00:48Z) - Dynamic backdoor attacks against federated learning [0.5482532589225553]
Federated Learning (FL) is a new machine learning framework, which enables millions of participants to collaboratively train model without compromising data privacy and security.
In this paper, we focus on dynamic backdoor attacks under FL setting, where the goal of the adversary is to reduce the performance of the model on targeted tasks.
To the best of our knowledge, this is the first paper that focus on dynamic backdoor attacks research under FL setting.
arXiv Detail & Related papers (2020-11-15T01:32:58Z) - Adversarial vs behavioural-based defensive AI with joint, continual and
active learning: automated evaluation of robustness to deception, poisoning
and concept drift [62.997667081978825]
Recent advancements in Artificial Intelligence (AI) have brought new capabilities to behavioural analysis (UEBA) for cyber-security.
In this paper, we present a solution to effectively mitigate this attack by improving the detection process and efficiently leveraging human expertise.
arXiv Detail & Related papers (2020-01-13T13:54:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.