Causal Feature Selection Method for Contextual Multi-Armed Bandits in Recommender System
- URL: http://arxiv.org/abs/2409.13888v1
- Date: Fri, 20 Sep 2024 20:39:23 GMT
- Title: Causal Feature Selection Method for Contextual Multi-Armed Bandits in Recommender System
- Authors: Zhenyu Zhao, Yexi Jiang,
- Abstract summary: Feature selection methods for machine learning models fail short for contextual multi-armed bandits (MAB) use cases.
In this paper, we introduce model-free feature selection methods designed for contexutal MAB problem.
The results show this feature selection method effectively selects the important features that lead to higher contextual MAB reward.
- Score: 2.704084816922349
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Features (a.k.a. context) are critical for contextual multi-armed bandits (MAB) performance. In practice of large scale online system, it is important to select and implement important features for the model: missing important features can led to sub-optimal reward outcome, and including irrelevant features can cause overfitting, poor model interpretability, and implementation cost. However, feature selection methods for conventional machine learning models fail short for contextual MAB use cases, as conventional methods select features correlated with the outcome variable, but not necessarily causing heterogeneuous treatment effect among arms which are truely important for contextual MAB. In this paper, we introduce model-free feature selection methods designed for contexutal MAB problem, based on heterogeneous causal effect contributed by the feature to the reward distribution. Empirical evaluation is conducted based on synthetic data as well as real data from an online experiment for optimizing content cover image in a recommender system. The results show this feature selection method effectively selects the important features that lead to higher contextual MAB reward than unimportant features. Compared with model embedded method, this model-free method has advantage of fast computation speed, ease of implementation, and prune of model mis-specification issues.
Related papers
- REFRESH: Responsible and Efficient Feature Reselection Guided by SHAP Values [17.489279048199304]
REFRESH is a method to reselect features so that additional constraints that are desirable towards model performance can be achieved without having to train several new models.
REFRESH's underlying algorithm is a novel technique using SHAP values and correlation analysis that can approximate for the predictions of a model without having to train these models.
arXiv Detail & Related papers (2024-03-13T18:06:43Z) - Debiasing Multimodal Models via Causal Information Minimization [65.23982806840182]
We study bias arising from confounders in a causal graph for multimodal data.
Robust predictive features contain diverse information that helps a model generalize to out-of-distribution data.
We use these features as confounder representations and use them via methods motivated by causal theory to remove bias from models.
arXiv Detail & Related papers (2023-11-28T16:46:14Z) - Causal Feature Selection via Transfer Entropy [59.999594949050596]
Causal discovery aims to identify causal relationships between features with observational data.
We introduce a new causal feature selection approach that relies on the forward and backward feature selection procedures.
We provide theoretical guarantees on the regression and classification errors for both the exact and the finite-sample cases.
arXiv Detail & Related papers (2023-10-17T08:04:45Z) - FAStEN: An Efficient Adaptive Method for Feature Selection and Estimation in High-Dimensional Functional Regressions [7.674715791336311]
We propose a new, flexible and ultra-efficient approach to perform feature selection in a sparse function-on-function regression problem.
We show how to extend it to the scalar-on-function framework.
We present an application to brain fMRI data from the AOMIC PIOP1 study.
arXiv Detail & Related papers (2023-03-26T19:41:17Z) - In Search of Insights, Not Magic Bullets: Towards Demystification of the
Model Selection Dilemma in Heterogeneous Treatment Effect Estimation [92.51773744318119]
This paper empirically investigates the strengths and weaknesses of different model selection criteria.
We highlight that there is a complex interplay between selection strategies, candidate estimators and the data used for comparing them.
arXiv Detail & Related papers (2023-02-06T16:55:37Z) - Compactness Score: A Fast Filter Method for Unsupervised Feature
Selection [66.84571085643928]
We propose a fast unsupervised feature selection method, named as, Compactness Score (CSUFS) to select desired features.
Our proposed algorithm seems to be more accurate and efficient compared with existing algorithms.
arXiv Detail & Related papers (2022-01-31T13:01:37Z) - Conservative Objective Models for Effective Offline Model-Based
Optimization [78.19085445065845]
Computational design problems arise in a number of settings, from synthetic biology to computer architectures.
We propose a method that learns a model of the objective function that lower bounds the actual value of the ground-truth objective on out-of-distribution inputs.
COMs are simple to implement and outperform a number of existing methods on a wide range of MBO problems.
arXiv Detail & Related papers (2021-07-14T17:55:28Z) - Feature Selection for Huge Data via Minipatch Learning [0.0]
We propose Stable Minipatch Selection (STAMPS) and Adaptive STAMPS.
STAMPS are meta-algorithms that build ensembles of selection events of base feature selectors trained on tiny, (ly-adaptive) random subsets of both the observations and features of the data.
Our approaches are general and can be employed with a variety of existing feature selection strategies and machine learning techniques.
arXiv Detail & Related papers (2020-10-16T17:41:08Z) - Leveraging Model Inherent Variable Importance for Stable Online Feature
Selection [16.396739487911056]
We introduce FIRES, a novel framework for online feature selection.
Our framework is generic in that it leaves the choice of the underlying model to the user.
Experiments show that the proposed framework is clearly superior in terms of feature selection stability.
arXiv Detail & Related papers (2020-06-18T10:01:18Z) - Stepwise Model Selection for Sequence Prediction via Deep Kernel
Learning [100.83444258562263]
We propose a novel Bayesian optimization (BO) algorithm to tackle the challenge of model selection in this setting.
In order to solve the resulting multiple black-box function optimization problem jointly and efficiently, we exploit potential correlations among black-box functions.
We are the first to formulate the problem of stepwise model selection (SMS) for sequence prediction, and to design and demonstrate an efficient joint-learning algorithm for this purpose.
arXiv Detail & Related papers (2020-01-12T09:42:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.