論文の概要: One Model is All You Need: ByT5-Sanskrit, a Unified Model for Sanskrit NLP Tasks
- arxiv url: http://arxiv.org/abs/2409.13920v1
- Date: Fri, 20 Sep 2024 22:02:26 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-07 04:39:44.082489
- Title: One Model is All You Need: ByT5-Sanskrit, a Unified Model for Sanskrit NLP Tasks
- Title(参考訳): サンスクリット NLP タスクのための統一モデル ByT5-Sanskrit
- Authors: Sebastian Nehrdich, Oliver Hellwig, Kurt Keutzer,
- Abstract要約: ByT5-Sanskritは、形態的にリッチなサンスクリット言語を含むNLPアプリケーション向けに設計された。
外部の言語資源によってカバーされていないデータへのデプロイが容易で、より堅牢である。
提案手法は,他の形態学的にリッチな言語に対する補題化と依存関係解析のための新たなベストスコアが得られることを示す。
- 参考スコア(独自算出の注目度): 26.848664285007022
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Morphologically rich languages are notoriously challenging to process for downstream NLP applications. This paper presents a new pretrained language model, ByT5-Sanskrit, designed for NLP applications involving the morphologically rich language Sanskrit. We evaluate ByT5-Sanskrit on established Sanskrit word segmentation tasks, where it outperforms previous data-driven approaches by a considerable margin and matches the performance of the current best lexicon-based model. It is easier to deploy and more robust to data not covered by external linguistic resources. It also achieves new state-of-the-art results in Vedic Sanskrit dependency parsing and OCR post-correction tasks. Additionally, based on the Digital Corpus of Sanskrit, we introduce a novel multitask dataset for the joint training of Sanskrit word segmentation, lemmatization, and morphosyntactic tagging tasks. We fine-tune ByT5-Sanskrit on this dataset, creating a versatile multitask model for various downstream Sanskrit applications. We have used this model in Sanskrit linguistic annotation projects, in information retrieval setups, and as a preprocessing step in a Sanskrit machine translation pipeline. We also show that our approach yields new best scores for lemmatization and dependency parsing of other morphologically rich languages. We thus demonstrate that byte-level pretrained language models can achieve excellent performance for morphologically rich languages, outperforming tokenizer-based models and presenting an important vector of exploration when constructing NLP pipelines for such languages.
- Abstract(参考訳): 形態的にリッチな言語は、下流のNLPアプリケーションのために処理することが難しいことで有名である。
本稿では,形態的にリッチなサンスクリット言語を含むNLPアプリケーション向けに設計された,新しい事前学習型言語モデルByT5-Sanskritを提案する。
ByT5-Sanskritは,既存のサンスクリット単語セグメンテーションタスクにおいて,従来のデータ駆動手法よりもかなり優れており,現行のレキシコンモデルの性能と一致している。
外部の言語資源によってカバーされていないデータへのデプロイが容易で、より堅牢である。
また、Vedic Sanskrit依存性解析とOCRポストコレクトタスクにおいて、最先端の新たな結果も達成している。
さらに,サンスクリットのDigital Corpusに基づいて,サンスクリット語のセグメンテーション,補題化,モルフォシンタクティックタギングタスクの共同トレーニングのための新しいマルチタスクデータセットを導入する。
このデータセットでByT5-Sanskritを微調整し、様々な下流のSanskritアプリケーションのための多目的マルチタスクモデルを作成します。
我々はこのモデルをサンスクリット言語アノテーションプロジェクト、情報検索のセットアップ、サンスクリット機械翻訳パイプラインにおける前処理のステップとして利用してきた。
また,本手法は,他の形態学的にリッチな言語の補題化や依存関係解析のための新たなベストスコアを得ることを示す。
そこで我々は, バイトレベルの事前学習型言語モデルにより, 形態的にリッチな言語に対して優れた性能を達成でき, トークン化モデルより優れ, それらの言語に対してNLPパイプラインを構築する際に重要な探索ベクトルを示すことを実証した。
関連論文リスト
- Pretraining Data and Tokenizer for Indic LLM [1.7729311045335219]
我々は,多言語Indic大言語モデル構築のためのデータ準備のための新しいアプローチを開発する。
われわれの厳密なデータ取得は、Common Crawl、Indic Book、ニュース記事、Wikipediaなど、オープンソースとプロプライエタリなソースにまたがっている。
Indic言語毎に、冗長で低品質なテキストコンテンツを効果的に除去するカスタムプリプロセッシングパイプラインを設計する。
論文 参考訳(メタデータ) (2024-07-17T11:06:27Z) - EthioLLM: Multilingual Large Language Models for Ethiopian Languages with Task Evaluation [24.060772057458685]
本稿では,エチオピア語5言語(Amharic, Ge'ez, Afan Oromo, Somali, Tigrinya)と英語の多言語大言語モデルであるEthioLLMを紹介する。
我々は,5つの下流自然言語処理(NLP)タスクにおいて,これらのモデルの性能を評価する。
論文 参考訳(メタデータ) (2024-03-20T16:43:42Z) - MoSECroT: Model Stitching with Static Word Embeddings for Crosslingual Zero-shot Transfer [50.40191599304911]
クロスリンガルゼロショット転送のための静的単語埋め込みを用いたMoSECroTモデルスティッチについて紹介する。
本稿では,ソースコードPLMの埋め込みと対象言語の静的単語埋め込みのための共通空間を構築するために,相対表現を利用した最初のフレームワークを提案する。
提案するフレームワークは,MoSECroTに対処する際,弱いベースラインと競合するが,強いベースラインに比べて競合する結果が得られないことを示す。
論文 参考訳(メタデータ) (2024-01-09T21:09:07Z) - Language Model Pre-Training with Sparse Latent Typing [66.75786739499604]
そこで本研究では,多種多様な潜在型を持つ文レベルのキーワードを疎に抽出することのできる,事前学習対象Sparse Latent Typingを提案する。
実験結果から,本モデルは外部知識を使わずに,自己教師型で解釈可能な潜在型カテゴリを学習できることが示唆された。
論文 参考訳(メタデータ) (2022-10-23T00:37:08Z) - PaLM: Scaling Language Modeling with Pathways [180.69584031908113]
我々は,パスウェイズ言語モデル PaLM と呼ばれるトランスフォーマー言語モデルを用いて,540ビリオンのパラメータを訓練した。
我々はPathwaysという新しいMLシステムを用いて,6144 TPU v4チップ上でPaLMをトレーニングした。
数百の言語理解および生成ベンチマーク上で、最先端の数発の学習結果を達成し、スケーリングの継続的なメリットを実証する。
論文 参考訳(メタデータ) (2022-04-05T16:11:45Z) - Can Character-based Language Models Improve Downstream Task Performance
in Low-Resource and Noisy Language Scenarios? [0.0]
我々は、ナラビジ(NArabizi)と呼ばれるラテン文字の拡張を用いて書かれた北アフリカ方言のアラビア語に焦点を当てている。
ナラビジの99k文のみを学習し,小さな木バンクで微調整したキャラクタベースモデルは,大規模多言語モデルとモノリンガルモデルで事前学習した同じアーキテクチャで得られたものに近い性能を示す。
論文 参考訳(メタデータ) (2021-10-26T14:59:16Z) - UNKs Everywhere: Adapting Multilingual Language Models to New Scripts [103.79021395138423]
マルチリンガルBERT(mBERT)やXLM-Rのような多言語言語モデルは、様々なNLPタスクに対して最先端の言語間転送性能を提供する。
キャパシティの制限と事前トレーニングデータの大きな差のため、リソース豊富な言語とリソースを対象とする言語には大きなパフォーマンスギャップがある。
本稿では,事前学習した多言語モデルの低リソース言語や未知のスクリプトへの高速かつ効果的な適応を可能にする新しいデータ効率手法を提案する。
論文 参考訳(メタデータ) (2020-12-31T11:37:28Z) - Indic-Transformers: An Analysis of Transformer Language Models for
Indian Languages [0.8155575318208631]
Transformerアーキテクチャに基づく言語モデルは、幅広いNLPタスクにおいて最先端のパフォーマンスを達成した。
しかしながら、このパフォーマンスは通常、英語、フランス語、スペイン語、ドイツ語などの高リソース言語でテストされ、報告される。
一方、インドの言語はそのようなベンチマークでは表現されていない。
論文 参考訳(メタデータ) (2020-11-04T14:43:43Z) - Unsupervised Paraphrasing with Pretrained Language Models [85.03373221588707]
教師なし環境で,事前学習した言語モデルを用いて高品質なパラフレーズを生成する訓練パイプラインを提案する。
提案手法は,タスク適応,自己スーパービジョン,動的ブロッキング(Dynamic Blocking)という新しい復号アルゴリズムから構成される。
提案手法は,Quora Question PairとParaNMTの両方のデータセット上で,最先端の性能を達成できることを示す。
論文 参考訳(メタデータ) (2020-10-24T11:55:28Z) - ParsBERT: Transformer-based Model for Persian Language Understanding [0.7646713951724012]
本稿ではペルシャ語用単言語BERT(ParsBERT)を提案する。
他のアーキテクチャや多言語モデルと比較すると、最先端のパフォーマンスを示している。
ParsBERTは、既存のデータセットや合成データセットを含む、すべてのデータセットでより高いスコアを取得する。
論文 参考訳(メタデータ) (2020-05-26T05:05:32Z) - Coreferential Reasoning Learning for Language Representation [88.14248323659267]
本稿では,コンテキスト内でコアファーデンシャル関係をキャプチャ可能な新しい言語表現モデルCorefBERTを提案する。
実験の結果,既存のベースラインモデルと比較して,CorefBERTは下流のNLPタスクにおいて一貫した大幅な改善を達成できることがわかった。
論文 参考訳(メタデータ) (2020-04-15T03:57:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。