SpaceBlender: Creating Context-Rich Collaborative Spaces Through Generative 3D Scene Blending
- URL: http://arxiv.org/abs/2409.13926v1
- Date: Fri, 20 Sep 2024 22:27:31 GMT
- Title: SpaceBlender: Creating Context-Rich Collaborative Spaces Through Generative 3D Scene Blending
- Authors: Nels Numan, Shwetha Rajaram, Balasaravanan Thoravi Kumaravel, Nicolai Marquardt, Andrew D. Wilson,
- Abstract summary: We introduce SpaceBlender, a pipeline that transforms user-provided 2D images into context-rich 3D environments.
Participants appreciated the enhanced familiarity and context provided by SpaceBlender but noted complexities in the generative environments.
We propose directions for improving the pipeline and discuss the value and design of blended spaces for different scenarios.
- Score: 19.06858242647237
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: There is increased interest in using generative AI to create 3D spaces for Virtual Reality (VR) applications. However, today's models produce artificial environments, falling short of supporting collaborative tasks that benefit from incorporating the user's physical context. To generate environments that support VR telepresence, we introduce SpaceBlender, a novel pipeline that utilizes generative AI techniques to blend users' physical surroundings into unified virtual spaces. This pipeline transforms user-provided 2D images into context-rich 3D environments through an iterative process consisting of depth estimation, mesh alignment, and diffusion-based space completion guided by geometric priors and adaptive text prompts. In a preliminary within-subjects study, where 20 participants performed a collaborative VR affinity diagramming task in pairs, we compared SpaceBlender with a generic virtual environment and a state-of-the-art scene generation framework, evaluating its ability to create virtual spaces suitable for collaboration. Participants appreciated the enhanced familiarity and context provided by SpaceBlender but also noted complexities in the generative environments that could detract from task focus. Drawing on participant feedback, we propose directions for improving the pipeline and discuss the value and design of blended spaces for different scenarios.
Related papers
- Architect: Generating Vivid and Interactive 3D Scenes with Hierarchical 2D Inpainting [47.014044892025346]
Architect is a generative framework that creates complex and realistic 3D embodied environments leveraging diffusion-based 2D image inpainting.
Our pipeline is further extended to a hierarchical and iterative inpainting process to continuously generate placement of large furniture and small objects to enrich the scene.
arXiv Detail & Related papers (2024-11-14T22:15:48Z) - GaussianAnything: Interactive Point Cloud Latent Diffusion for 3D Generation [75.39457097832113]
This paper introduces a novel 3D generation framework, offering scalable, high-quality 3D generation with an interactive Point Cloud-structured Latent space.
Our framework employs a Variational Autoencoder with multi-view posed RGB-D(epth)-N(ormal) renderings as input, using a unique latent space design that preserves 3D shape information.
The proposed method, GaussianAnything, supports multi-modal conditional 3D generation, allowing for point cloud, caption, and single/multi-view image inputs.
arXiv Detail & Related papers (2024-11-12T18:59:32Z) - Social Conjuring: Multi-User Runtime Collaboration with AI in Building Virtual 3D Worlds [3.5152339192019113]
Social Conjurer is a framework for AI-augmented dynamic 3D scene co-creation.
This article presents a set of implications for designing human-centered interfaces that incorporate AI models into 3D content generation.
arXiv Detail & Related papers (2024-09-30T23:02:51Z) - Grounding 3D Scene Affordance From Egocentric Interactions [52.5827242925951]
Grounding 3D scene affordance aims to locate interactive regions in 3D environments.
We introduce a novel task: grounding 3D scene affordance from egocentric interactions.
arXiv Detail & Related papers (2024-09-29T10:46:19Z) - Dynamic Scene Understanding through Object-Centric Voxelization and Neural Rendering [57.895846642868904]
We present a 3D generative model named DynaVol-S for dynamic scenes that enables object-centric learning.
voxelization infers per-object occupancy probabilities at individual spatial locations.
Our approach integrates 2D semantic features to create 3D semantic grids, representing the scene through multiple disentangled voxel grids.
arXiv Detail & Related papers (2024-07-30T15:33:58Z) - ReALFRED: An Embodied Instruction Following Benchmark in Photo-Realistic Environments [13.988804095409133]
We propose the ReALFRED benchmark that employs real-world scenes, objects, and room layouts to learn agents to complete household tasks.
Specifically, we extend the ALFRED benchmark with updates for larger environmental spaces with smaller visual domain gaps.
With ReALFRED, we analyze previously crafted methods for the ALFRED benchmark and observe that they consistently yield lower performance in all metrics.
arXiv Detail & Related papers (2024-07-26T07:00:27Z) - Volumetric Environment Representation for Vision-Language Navigation [66.04379819772764]
Vision-language navigation (VLN) requires an agent to navigate through a 3D environment based on visual observations and natural language instructions.
We introduce a Volumetric Environment Representation (VER), which voxelizes the physical world into structured 3D cells.
VER predicts 3D occupancy, 3D room layout, and 3D bounding boxes jointly.
arXiv Detail & Related papers (2024-03-21T06:14:46Z) - VR-GS: A Physical Dynamics-Aware Interactive Gaussian Splatting System in Virtual Reality [39.53150683721031]
Our proposed VR-GS system represents a leap forward in human-centered 3D content interaction.
The components of our Virtual Reality system are designed for high efficiency and effectiveness.
arXiv Detail & Related papers (2024-01-30T01:28:36Z) - Evaluating Continual Learning Algorithms by Generating 3D Virtual
Environments [66.83839051693695]
Continual learning refers to the ability of humans and animals to incrementally learn over time in a given environment.
We propose to leverage recent advances in 3D virtual environments in order to approach the automatic generation of potentially life-long dynamic scenes with photo-realistic appearance.
A novel element of this paper is that scenes are described in a parametric way, thus allowing the user to fully control the visual complexity of the input stream the agent perceives.
arXiv Detail & Related papers (2021-09-16T10:37:21Z) - iGibson, a Simulation Environment for Interactive Tasks in Large
Realistic Scenes [54.04456391489063]
iGibson is a novel simulation environment to develop robotic solutions for interactive tasks in large-scale realistic scenes.
Our environment contains fifteen fully interactive home-sized scenes populated with rigid and articulated objects.
iGibson features enable the generalization of navigation agents, and that the human-iGibson interface and integrated motion planners facilitate efficient imitation learning of simple human demonstrated behaviors.
arXiv Detail & Related papers (2020-12-05T02:14:17Z) - SceneGen: Generative Contextual Scene Augmentation using Scene Graph
Priors [3.1969855247377827]
We introduce SceneGen, a generative contextual augmentation framework that predicts virtual object positions and orientations within existing scenes.
SceneGen takes a semantically segmented scene as input, and outputs positional and orientational probability maps for placing virtual content.
We formulate a novel spatial Scene Graph representation, which encapsulates explicit topological properties between objects, object groups, and the room.
To demonstrate our system in action, we develop an Augmented Reality application, in which objects can be contextually augmented in real-time.
arXiv Detail & Related papers (2020-09-25T18:36:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.