VR-GS: A Physical Dynamics-Aware Interactive Gaussian Splatting System in Virtual Reality
- URL: http://arxiv.org/abs/2401.16663v2
- Date: Sat, 4 May 2024 21:17:37 GMT
- Title: VR-GS: A Physical Dynamics-Aware Interactive Gaussian Splatting System in Virtual Reality
- Authors: Ying Jiang, Chang Yu, Tianyi Xie, Xuan Li, Yutao Feng, Huamin Wang, Minchen Li, Henry Lau, Feng Gao, Yin Yang, Chenfanfu Jiang,
- Abstract summary: Our proposed VR-GS system represents a leap forward in human-centered 3D content interaction.
The components of our Virtual Reality system are designed for high efficiency and effectiveness.
- Score: 39.53150683721031
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As consumer Virtual Reality (VR) and Mixed Reality (MR) technologies gain momentum, there's a growing focus on the development of engagements with 3D virtual content. Unfortunately, traditional techniques for content creation, editing, and interaction within these virtual spaces are fraught with difficulties. They tend to be not only engineering-intensive but also require extensive expertise, which adds to the frustration and inefficiency in virtual object manipulation. Our proposed VR-GS system represents a leap forward in human-centered 3D content interaction, offering a seamless and intuitive user experience. By developing a physical dynamics-aware interactive Gaussian Splatting in a Virtual Reality setting, and constructing a highly efficient two-level embedding strategy alongside deformable body simulations, VR-GS ensures real-time execution with highly realistic dynamic responses. The components of our Virtual Reality system are designed for high efficiency and effectiveness, starting from detailed scene reconstruction and object segmentation, advancing through multi-view image in-painting, and extending to interactive physics-based editing. The system also incorporates real-time deformation embedding and dynamic shadow casting, ensuring a comprehensive and engaging virtual experience.Our project page is available at: https://yingjiang96.github.io/VR-GS/.
Related papers
- VR-Splatting: Foveated Radiance Field Rendering via 3D Gaussian Splatting and Neural Points [4.962171160815189]
High-performance demands of virtual reality systems present challenges in utilizing fast-to-render scene representations like 3DGS.
We propose foveated rendering as a promising solution to these obstacles.
Our approach introduces a novel foveated rendering approach for Virtual Reality, that leverages the sharp, detailed output of neural point rendering for the foveal region, fused with a smooth rendering of 3DGS for the peripheral vision.
arXiv Detail & Related papers (2024-10-23T14:54:48Z) - Coral Model Generation from Single Images for Virtual Reality Applications [22.18438294137604]
This paper introduces a deep-learning framework that generates high-precision 3D coral models from a single image.
The project incorporates Explainable AI (XAI) to transform AI-generated models into interactive "artworks"
arXiv Detail & Related papers (2024-09-04T01:54:20Z) - Haptic Repurposing with GenAI [5.424247121310253]
Mixed Reality aims to merge the digital and physical worlds to create immersive human-computer interactions.
This paper introduces Haptic Repurposing with GenAI, an innovative approach to enhance MR interactions by transforming any physical objects into adaptive haptic interfaces for AI-generated virtual assets.
arXiv Detail & Related papers (2024-06-11T13:06:28Z) - PhysDreamer: Physics-Based Interaction with 3D Objects via Video Generation [62.53760963292465]
PhysDreamer is a physics-based approach that endows static 3D objects with interactive dynamics.
We present our approach on diverse examples of elastic objects and evaluate the realism of the synthesized interactions through a user study.
arXiv Detail & Related papers (2024-04-19T17:41:05Z) - Virtual Reality in Metaverse over Wireless Networks with User-centered
Deep Reinforcement Learning [8.513938423514636]
We introduce a multi-user VR computation offloading over wireless communication scenario.
In addition, we devised a novel user-centered deep reinforcement learning approach to find a near-optimal solution.
arXiv Detail & Related papers (2023-03-08T03:10:41Z) - Force-Aware Interface via Electromyography for Natural VR/AR Interaction [69.1332992637271]
We design a learning-based neural interface for natural and intuitive force inputs in VR/AR.
We show that our interface can decode finger-wise forces in real-time with 3.3% mean error, and generalize to new users with little calibration.
We envision our findings to push forward research towards more realistic physicality in future VR/AR.
arXiv Detail & Related papers (2022-10-03T20:51:25Z) - Wireless Edge-Empowered Metaverse: A Learning-Based Incentive Mechanism
for Virtual Reality [102.4151387131726]
We propose a learning-based Incentive Mechanism framework for VR services in the Metaverse.
First, we propose the quality of perception as the metric for VR users in the virtual world.
Second, for quick trading of VR services between VR users (i.e., buyers) and VR SPs (i.e., sellers), we design a double Dutch auction mechanism.
Third, for auction communication reduction, we design a deep reinforcement learning-based auctioneer to accelerate this auction process.
arXiv Detail & Related papers (2021-11-07T13:02:52Z) - Evaluating Continual Learning Algorithms by Generating 3D Virtual
Environments [66.83839051693695]
Continual learning refers to the ability of humans and animals to incrementally learn over time in a given environment.
We propose to leverage recent advances in 3D virtual environments in order to approach the automatic generation of potentially life-long dynamic scenes with photo-realistic appearance.
A novel element of this paper is that scenes are described in a parametric way, thus allowing the user to fully control the visual complexity of the input stream the agent perceives.
arXiv Detail & Related papers (2021-09-16T10:37:21Z) - Robust Egocentric Photo-realistic Facial Expression Transfer for Virtual
Reality [68.18446501943585]
Social presence will fuel the next generation of communication systems driven by digital humans in virtual reality (VR)
The best 3D video-realistic VR avatars that minimize the uncanny effect rely on person-specific (PS) models.
This paper makes progress in overcoming these limitations by proposing an end-to-end multi-identity architecture.
arXiv Detail & Related papers (2021-04-10T15:48:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.