One Model, Any Conjunctive Query: Graph Neural Networks for Answering Complex Queries over Knowledge Graphs
- URL: http://arxiv.org/abs/2409.13959v1
- Date: Sat, 21 Sep 2024 00:30:44 GMT
- Title: One Model, Any Conjunctive Query: Graph Neural Networks for Answering Complex Queries over Knowledge Graphs
- Authors: Krzysztof Olejniczak, Xingyue Huang, İsmail İlkan Ceylan, Mikhail Galkin,
- Abstract summary: We propose AnyCQ, a graph neural network model that can classify answers to any conjunctive query on any knowledge graph.
We show that AnyCQ can generalize to large queries of arbitrary structure, reliably classifying and retrieving answers to samples where existing approaches fail.
- Score: 7.34044245579928
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Traditional query answering over knowledge graphs -- or broadly over relational data -- is one of the most fundamental problems in data management. Motivated by the incompleteness of modern knowledge graphs, a new setup for query answering has emerged, where the goal is to predict answers that do not necessarily appear in the knowledge graph, but are present in its completion. In this work, we propose AnyCQ, a graph neural network model that can classify answers to any conjunctive query on any knowledge graph, following training. At the core of our framework lies a graph neural network model trained using a reinforcement learning objective to answer Boolean queries. Our approach and problem setup differ from existing query answering studies in multiple dimensions. First, we focus on the problem of query answer classification: given a query and a set of possible answers, classify these proposals as true or false relative to the complete knowledge graph. Second, we study the problem of query answer retrieval: given a query, retrieve an answer to the query relative to the complete knowledge graph or decide that no correct solutions exist. Trained on simple, small instances, AnyCQ can generalize to large queries of arbitrary structure, reliably classifying and retrieving answers to samples where existing approaches fail, which is empirically validated on new and challenging benchmarks. Furthermore, we demonstrate that our AnyCQ models effectively transfer to out-of-distribution knowledge graphs, when equipped with a relevant link predictor, highlighting their potential to serve as a general engine for query answering.
Related papers
- Meta Operator for Complex Query Answering on Knowledge Graphs [58.340159346749964]
We argue that different logical operator types, rather than the different complex query types, are the key to improving generalizability.
We propose a meta-learning algorithm to learn the meta-operators with limited data and adapt them to different instances of operators under various complex queries.
Empirical results show that learning meta-operators is more effective than learning original CQA or meta-CQA models.
arXiv Detail & Related papers (2024-03-15T08:54:25Z) - Open-Set Knowledge-Based Visual Question Answering with Inference Paths [79.55742631375063]
The purpose of Knowledge-Based Visual Question Answering (KB-VQA) is to provide a correct answer to the question with the aid of external knowledge bases.
We propose a new retriever-ranker paradigm of KB-VQA, Graph pATH rankER (GATHER for brevity)
Specifically, it contains graph constructing, pruning, and path-level ranking, which not only retrieves accurate answers but also provides inference paths that explain the reasoning process.
arXiv Detail & Related papers (2023-10-12T09:12:50Z) - Rethinking Complex Queries on Knowledge Graphs with Neural Link Predictors [58.340159346749964]
We propose a new neural-symbolic method to support end-to-end learning using complex queries with provable reasoning capability.
We develop a new dataset containing ten new types of queries with features that have never been considered.
Our method outperforms previous methods significantly in the new dataset and also surpasses previous methods in the existing dataset at the same time.
arXiv Detail & Related papers (2023-04-14T11:35:35Z) - Neural Graph Reasoning: Complex Logical Query Answering Meets Graph
Databases [63.96793270418793]
Complex logical query answering (CLQA) is a recently emerged task of graph machine learning.
We introduce the concept of Neural Graph Database (NGDBs)
NGDB consists of a Neural Graph Storage and a Neural Graph Engine.
arXiv Detail & Related papers (2023-03-26T04:03:37Z) - Logical Message Passing Networks with One-hop Inference on Atomic
Formulas [57.47174363091452]
We propose a framework for complex query answering that decomposes the Knowledge Graph embeddings from neural set operators.
On top of the query graph, we propose the Logical Message Passing Neural Network (LMPNN) that connects the local one-hop inferences on atomic formulas to the global logical reasoning.
Our approach yields the new state-of-the-art neural CQA model.
arXiv Detail & Related papers (2023-01-21T02:34:06Z) - Inductive Logical Query Answering in Knowledge Graphs [30.220508024471595]
We study the inductive query answering task where inference is performed on a graph containing new entities with queries over both seen and unseen entities.
We devise two mechanisms leveraging inductive node and relational structure representations powered by graph neural networks (GNNs)
Experimentally, we show that inductive models are able to perform logical reasoning at inference time over unseen nodes generalizing to graphs up to 500% larger than training ones.
arXiv Detail & Related papers (2022-10-13T03:53:34Z) - Neural-Symbolic Models for Logical Queries on Knowledge Graphs [17.290758383645567]
We propose Graph Neural Network Query Executor (GNN-QE), a neural-symbolic model that enjoys the advantages of both worlds.
GNN-QE decomposes a complex FOL query into relation projections and logical operations over fuzzy sets.
Experiments on 3 datasets show that GNN-QE significantly improves over previous state-of-the-art models in answering FOL queries.
arXiv Detail & Related papers (2022-05-16T18:39:04Z) - Question-Answer Sentence Graph for Joint Modeling Answer Selection [122.29142965960138]
We train and integrate state-of-the-art (SOTA) models for computing scores between question-question, question-answer, and answer-answer pairs.
Online inference is then performed to solve the AS2 task on unseen queries.
arXiv Detail & Related papers (2022-02-16T05:59:53Z) - Query Embedding on Hyper-relational Knowledge Graphs [0.4779196219827507]
Multi-hop logical reasoning is an established problem in the field of representation learning on knowledge graphs.
We extend the multi-hop reasoning problem to hyper-relational KGs allowing to tackle this new type of complex queries.
arXiv Detail & Related papers (2021-06-15T14:08:50Z) - Answering Complex Queries in Knowledge Graphs with Bidirectional
Sequence Encoders [22.63481666560029]
We propose Bi-Directional Query Embedding (BIQE), a method that embeds conjunctive queries with models based on bi-directional attention mechanisms.
We introduce a new dataset for predicting the answer of conjunctive query and conduct experiments that show BIQE significantly outperforming state of the art baselines.
arXiv Detail & Related papers (2020-04-06T12:17:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.