ProTEA: Programmable Transformer Encoder Acceleration on FPGA
- URL: http://arxiv.org/abs/2409.13975v1
- Date: Sat, 21 Sep 2024 01:44:13 GMT
- Title: ProTEA: Programmable Transformer Encoder Acceleration on FPGA
- Authors: Ehsan Kabir, Jason D. Bakos, David Andrews, Miaoqing Huang,
- Abstract summary: Transformer neural networks (TNNs) have been widely utilized on a diverse range of applications, including natural language processing (NLP), machine translation, and computer vision (CV)
Despite the popularity of TNNs, there has been limited numbers of hardware accelerators targeting these two critical blocks.
This paper introduces textitProTEA, a programmable runtime accelerator tailored for the dense computations of state-of-the-art transformer encoders.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Transformer neural networks (TNN) have been widely utilized on a diverse range of applications, including natural language processing (NLP), machine translation, and computer vision (CV). Their widespread adoption has been primarily driven by the exceptional performance of their multi-head self-attention block used to extract key features from sequential data. The multi-head self-attention block is followed by feedforward neural networks, which play a crucial role in introducing non-linearity to assist the model in learning complex patterns. Despite the popularity of TNNs, there has been limited numbers of hardware accelerators targeting these two critical blocks. Most prior works have concentrated on sparse architectures that are not flexible for popular TNN variants. This paper introduces \textit{ProTEA}, a runtime programmable accelerator tailored for the dense computations of most of state-of-the-art transformer encoders. \textit{ProTEA} is designed to reduce latency by maximizing parallelism. We introduce an efficient tiling of large matrices that can distribute memory and computing resources across different hardware components within the FPGA. We provide run time evaluations of \textit{ProTEA} on a Xilinx Alveo U55C high-performance data center accelerator card. Experimental results demonstrate that \textit{ProTEA} can host a wide range of popular transformer networks and achieve near optimal performance with a tile size of 64 in the multi-head self-attention block and 6 in the feedforward networks block when configured with 8 parallel attention heads, 12 layers, and an embedding dimension of 768 on the U55C. Comparative results are provided showing \textit{ProTEA} is 2.5$\times$ faster than an NVIDIA Titan XP GPU. Results also show that it achieves 1.3 -- 2.8$\times$ speed up compared with current state-of-the-art custom designed FPGA accelerators.
Related papers
- FAMOUS: Flexible Accelerator for the Attention Mechanism of Transformer on UltraScale+ FPGAs [0.0]
Transformer neural networks (TNNs) are being applied across a widening range of application domains, including natural language processing (NLP), machine translation, and computer vision (CV)
This paper proposes textitFAMOUS, a flexible hardware accelerator for dense multi-head attention computation of TNNs on field-programmable gate arrays (FPGAs)
It is optimized for high utilization of processing elements and on-chip memories to improve parallelism and reduce latency.
arXiv Detail & Related papers (2024-09-21T05:25:46Z) - Quasar-ViT: Hardware-Oriented Quantization-Aware Architecture Search for Vision Transformers [56.37495946212932]
Vision transformers (ViTs) have demonstrated their superior accuracy for computer vision tasks compared to convolutional neural networks (CNNs)
This work proposes Quasar-ViT, a hardware-oriented quantization-aware architecture search framework for ViTs.
arXiv Detail & Related papers (2024-07-25T16:35:46Z) - Spiker+: a framework for the generation of efficient Spiking Neural
Networks FPGA accelerators for inference at the edge [49.42371633618761]
Spiker+ is a framework for generating efficient, low-power, and low-area customized Spiking Neural Networks (SNN) accelerators on FPGA for inference at the edge.
Spiker+ is tested on two benchmark datasets, the MNIST and the Spiking Heidelberg Digits (SHD)
arXiv Detail & Related papers (2024-01-02T10:42:42Z) - X-Former: In-Memory Acceleration of Transformers [7.194491150684456]
Transformers have achieved great success in a wide variety of natural language processing (NLP) tasks due to the attention mechanism.
Traditional deep neural network (DNN) accelerators face limitations in processing Transformers efficiently.
In-memory accelerators based on non-volatile memory promise to be an effective solution to this challenge.
We present X-Former, a hybrid in-memory hardware accelerator that consists of both NVM and CMOS processing elements.
arXiv Detail & Related papers (2023-03-13T21:11:54Z) - Optimization of FPGA-based CNN Accelerators Using Metaheuristics [1.854931308524932]
convolutional neural networks (CNNs) have demonstrated their ability to solve problems in many fields.
FPGAs have seen a surge in interest for accelerating CNN inference.
Current trend in FPGA-based CNN accelerators is to implement multiple convolutional layer processors (CLPs)
arXiv Detail & Related papers (2022-09-22T18:57:49Z) - Adaptable Butterfly Accelerator for Attention-based NNs via Hardware and
Algorithm Co-design [66.39546326221176]
Attention-based neural networks have become pervasive in many AI tasks.
The use of the attention mechanism and feed-forward network (FFN) demands excessive computational and memory resources.
This paper proposes a hardware-friendly variant that adopts a unified butterfly sparsity pattern to approximate both the attention mechanism and the FFNs.
arXiv Detail & Related papers (2022-09-20T09:28:26Z) - A Length Adaptive Algorithm-Hardware Co-design of Transformer on FPGA
Through Sparse Attention and Dynamic Pipelining [28.336502115532905]
This paper proposes a coherent sequence length adaptive algorithm-hardware co-design for Transformer acceleration.
We develop a hardware-friendly sparse attention operator and a length-aware hardware resource scheduling algorithm.
Our design has very small accuracy loss and has 80.2 $times$ and 2.6 $times$ speedup compared to CPU and GPU implementation.
arXiv Detail & Related papers (2022-08-07T05:48:38Z) - An Adaptive Device-Edge Co-Inference Framework Based on Soft
Actor-Critic [72.35307086274912]
High-dimension parameter model and large-scale mathematical calculation restrict execution efficiency, especially for Internet of Things (IoT) devices.
We propose a new Deep Reinforcement Learning (DRL)-Soft Actor Critic for discrete (SAC-d), which generates the emphexit point, emphexit point, and emphcompressing bits by soft policy iterations.
Based on the latency and accuracy aware reward design, such an computation can well adapt to the complex environment like dynamic wireless channel and arbitrary processing, and is capable of supporting the 5G URL
arXiv Detail & Related papers (2022-01-09T09:31:50Z) - VersaGNN: a Versatile accelerator for Graph neural networks [81.1667080640009]
We propose textitVersaGNN, an ultra-efficient, systolic-array-based versatile hardware accelerator.
textitVersaGNN achieves on average 3712$times$ speedup with 1301.25$times$ energy reduction on CPU, and 35.4$times$ speedup with 17.66$times$ energy reduction on GPU.
arXiv Detail & Related papers (2021-05-04T04:10:48Z) - NullaNet Tiny: Ultra-low-latency DNN Inference Through Fixed-function
Combinational Logic [4.119948826527649]
Field-programmable gate array (FPGA)-based accelerators are gaining traction as a serious contender to replace graphics processing unit/central processing unit-based platforms.
This paper presents NullaNet Tiny, a framework for constructing resource and energy-efficient, ultra-low-latency FPGA-based neural network accelerators.
arXiv Detail & Related papers (2021-04-07T00:16:39Z) - EdgeBERT: Sentence-Level Energy Optimizations for Latency-Aware
Multi-Task NLP Inference [82.1584439276834]
Transformer-based language models such as BERT provide significant accuracy improvement for a multitude of natural language processing (NLP) tasks.
We present EdgeBERT, an in-depth algorithm- hardware co-design for latency-aware energy optimization for multi-task NLP.
arXiv Detail & Related papers (2020-11-28T19:21:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.