Holistic and Historical Instance Comparison for Cervical Cell Detection
- URL: http://arxiv.org/abs/2409.13987v1
- Date: Sat, 21 Sep 2024 02:36:19 GMT
- Title: Holistic and Historical Instance Comparison for Cervical Cell Detection
- Authors: Hao Jiang, Runsheng Liu, Yanning Zhou, Huangjing Lin, Hao Chen,
- Abstract summary: We propose a holistic and historical instance comparison approach for cervical cell detection.
Specifically, we first develop a holistic instance comparison scheme enforcing both RoI-level and class-level cell discrimination.
This coarse-to-fine cell comparison encourages the model to learn foreground-distinguishable and class-wise representations.
- Score: 6.735336269995631
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Cytology screening from Papanicolaou (Pap) smears is a common and effective tool for the preventive clinical management of cervical cancer, where abnormal cell detection from whole slide images serves as the foundation for reporting cervical cytology. However, cervical cell detection remains challenging due to 1) hazily-defined cell types (e.g., ASC-US) with subtle morphological discrepancies caused by the dynamic cancerization process, i.e., cell class ambiguity, and 2) imbalanced class distributions of clinical data may cause missed detection, especially for minor categories, i.e., cell class imbalance. To this end, we propose a holistic and historical instance comparison approach for cervical cell detection. Specifically, we first develop a holistic instance comparison scheme enforcing both RoI-level and class-level cell discrimination. This coarse-to-fine cell comparison encourages the model to learn foreground-distinguishable and class-wise representations. To emphatically improve the distinguishability of minor classes, we then introduce a historical instance comparison scheme with a confident sample selection-based memory bank, which involves comparing current embeddings with historical embeddings for better cell instance discrimination. Extensive experiments and analysis on two large-scale cytology datasets including 42,592 and 114,513 cervical cells demonstrate the effectiveness of our method. The code is available at https://github.com/hjiangaz/HERO.
Related papers
- Single-Cell Deep Clustering Method Assisted by Exogenous Gene
Information: A Novel Approach to Identifying Cell Types [50.55583697209676]
We develop an attention-enhanced graph autoencoder, which is designed to efficiently capture the topological features between cells.
During the clustering process, we integrated both sets of information and reconstructed the features of both cells and genes to generate a discriminative representation.
This research offers enhanced insights into the characteristics and distribution of cells, thereby laying the groundwork for early diagnosis and treatment of diseases.
arXiv Detail & Related papers (2023-11-28T09:14:55Z) - Interpretable pap smear cell representation for cervical cancer
screening [3.8656297418166305]
We introduce a method to learn explainable deep cervical cell representations for pap smear images based on one class classification using variational autoencoders.
Our model can discriminate abnormality without the need of additional training of deep models.
arXiv Detail & Related papers (2023-11-17T01:29:16Z) - Multi-task Explainable Skin Lesion Classification [54.76511683427566]
We propose a few-shot-based approach for skin lesions that generalizes well with few labelled data.
The proposed approach comprises a fusion of a segmentation network that acts as an attention module and classification network.
arXiv Detail & Related papers (2023-10-11T05:49:47Z) - Imbalanced Domain Generalization for Robust Single Cell Classification
in Hematological Cytomorphology [3.7007225479462402]
We train a robust CNN for WBC classification by addressing cross-domain data imbalance and domain shifts.
Our approach achieves the best F1 macro score compared to other existing methods.
arXiv Detail & Related papers (2023-03-14T10:20:31Z) - Hierarchical Semi-Supervised Contrastive Learning for
Contamination-Resistant Anomaly Detection [81.07346419422605]
Anomaly detection aims at identifying deviant samples from the normal data distribution.
Contrastive learning has provided a successful way to sample representation that enables effective discrimination on anomalies.
We propose a novel hierarchical semi-supervised contrastive learning framework, for contamination-resistant anomaly detection.
arXiv Detail & Related papers (2022-07-24T18:49:26Z) - Less is More: Adaptive Curriculum Learning for Thyroid Nodule Diagnosis [50.231954872304314]
We propose an Adaptive Curriculum Learning framework, which adaptively discovers and discards the samples with inconsistent labels.
We also contribute TNCD: a Thyroid Nodule Classification dataset.
arXiv Detail & Related papers (2022-07-02T11:50:02Z) - Multi-class versus One-class classifier in spontaneous speech analysis
oriented to Alzheimer Disease diagnosis [58.720142291102135]
The aim of our project is to contribute to earlier diagnosis of AD and better estimates of its severity by using automatic analysis performed through new biomarkers extracted from speech signal.
The use of information about outlier and Fractal Dimension features improves the system performance.
arXiv Detail & Related papers (2022-03-21T09:57:20Z) - Multi-Class Cell Detection Using Spatial Context Representation [23.542218679448624]
In digital pathology, both detection and classification of cells are important for automatic diagnostic and prognostic tasks.
Existing methods focus on morphological appearance of individual cells, whereas in practice pathologists often infer cell classes through their spatial context.
We propose a novel method for both detection and classification that explicitly incorporates spatial contextual information.
arXiv Detail & Related papers (2021-10-10T19:54:40Z) - Deep Semi-supervised Metric Learning with Dual Alignment for Cervical
Cancer Cell Detection [49.78612417406883]
We propose a novel semi-supervised deep metric learning method for cervical cancer cell detection.
Our model learns an embedding metric space and conducts dual alignment of semantic features on both the proposal and prototype levels.
We construct a large-scale dataset for semi-supervised cervical cancer cell detection for the first time, consisting of 240,860 cervical cell images.
arXiv Detail & Related papers (2021-04-07T17:11:27Z) - DeepCervix: A Deep Learning-based Framework for the Classification of
Cervical Cells Using Hybrid Deep Feature Fusion Techniques [14.208643185430219]
Cervical cancer, one of the most common fatal cancers among women, can be prevented by regular screening to detect any precancerous lesions at early stages.
To improve the manual screening practice, machine learning (ML) and deep learning (DL) based computer-aided diagnostic (CAD) systems have been investigated to classify cervical pap cells.
This study proposes a hybrid deep feature fusion (HDFF) technique based on DL to classify the cervical cells accurately.
arXiv Detail & Related papers (2021-02-24T10:34:51Z) - Cell abundance aware deep learning for cell detection on highly
imbalanced pathological data [0.0]
In digital pathology, less abundant cell types can be of biological significance.
We proposed a deep learning pipeline that considers the abundance of cell types during model training.
We found that scaling deep learning loss function by the abundance of cells improves cell detection performance.
arXiv Detail & Related papers (2021-02-23T13:07:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.