論文の概要: GAInS: Gradient Anomaly-aware Biomedical Instance Segmentation
- arxiv url: http://arxiv.org/abs/2409.13988v1
- Date: Sat, 21 Sep 2024 02:36:46 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-07 04:17:38.595610
- Title: GAInS: Gradient Anomaly-aware Biomedical Instance Segmentation
- Title(参考訳): GAInS: ゆるやかな異常を意識したバイオメディカルインスタンスセグメンテーション
- Authors: Runsheng Liu, Hao Jiang, Yanning Zhou, Huangjing Lin, Liansheng Wang, Hao Chen,
- Abstract要約: 本稿では,GAInS(Gradient Anomaly-aware Biomedical Instance approach)を提案する。
GAInS は Gradient Anomaly Mapping Module (GAMM) 上に構築されており、ウィンドウスライディングを通じてインスタンスのラジアルフィールドをエンコードする。
そこで我々は,勾配異常認識機能を有する適応局所閉じ込めモジュール (ALRM) を提案する。
- 参考スコア(独自算出の注目度): 14.612418717980496
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Instance segmentation plays a vital role in the morphological quantification of biomedical entities such as tissues and cells, enabling precise identification and delineation of different structures. Current methods often address the challenges of touching, overlapping or crossing instances through individual modeling, while neglecting the intrinsic interrelation between these conditions. In this work, we propose a Gradient Anomaly-aware Biomedical Instance Segmentation approach (GAInS), which leverages instance gradient information to perceive local gradient anomaly regions, thus modeling the spatial relationship between instances and refining local region segmentation. Specifically, GAInS is firstly built on a Gradient Anomaly Mapping Module (GAMM), which encodes the radial fields of instances through window sliding to obtain instance gradient anomaly maps. To efficiently refine boundaries and regions with gradient anomaly attention, we propose an Adaptive Local Refinement Module (ALRM) with a gradient anomaly-aware loss function. Extensive comparisons and ablation experiments in three biomedical scenarios demonstrate that our proposed GAInS outperforms other state-of-the-art (SOTA) instance segmentation methods. The code is available at https://github.com/DeepGAInS/GAInS.
- Abstract(参考訳): サンプルセグメンテーションは、組織や細胞などの生物医学的な実体の形態的定量化において重要な役割を担い、異なる構造の正確な同定とデライン化を可能にしている。
現在の手法は、個々のモデリングを通してインスタンスに触れたり、重なり合ったり、横断するという課題に対処する一方で、これらの条件間の本質的な相互関係を無視することが多い。
本研究では, 局所勾配異常領域の知覚にインスタンス勾配情報を活用する, インスタンス間の空間的関係をモデル化し, 局所領域のセグメンテーションを精査する, GAInS(Gradient Anomaly-Aware Biomedical Instance Segmentation approach)を提案する。
具体的には、GAInSは、まず、GAMM(Gradient Anomaly Mapping Module)上に構築され、ウィンドウスライディングを通してインスタンスのラジアルフィールドを符号化し、インスタンス勾配の異常マップを取得する。
そこで我々は,勾配異常認識機能を有する適応局所閉じ込めモジュール (ALRM) を提案する。
3つのバイオメディカルシナリオにおける大規模比較実験とアブレーション実験により,提案したGAInSは他のSOTAインスタンスセグメンテーション法よりも優れた性能を示した。
コードはhttps://github.com/DeepGAInS/GAInSで入手できる。
関連論文リスト
- Dual-scale Enhanced and Cross-generative Consistency Learning for Semi-supervised Medical Image Segmentation [49.57907601086494]
医用画像のセグメンテーションはコンピュータ支援診断において重要な役割を担っている。
半教師型医用画像(DEC-Seg)のための新しいDual-scale Enhanced and Cross-generative consistency learning frameworkを提案する。
論文 参考訳(メタデータ) (2023-12-26T12:56:31Z) - DFGET: Displacement-Field Assisted Graph Energy Transmitter for Gland
Instance Segmentation [1.907126872483548]
これらの問題を解決するために、変位場支援グラフエネルギー送信機(DFGET)フレームワークを提案する。
具体的には、異方性拡散に基づく新しいメッセージパッシング手法を開発し、ノードの特徴を更新する。
DFの制約により、拡散理論に基づくグラフクラスタモジュールがクラス内の特徴整合性を改善するために提示される。
論文 参考訳(メタデータ) (2023-12-11T01:42:10Z) - Histopathology Whole Slide Image Analysis with Heterogeneous Graph
Representation Learning [78.49090351193269]
本稿では,WSI分析のために,異なる種類の核間の相互関係を利用する新しいグラフベースのフレームワークを提案する。
具体的には、WSI を各ノードに "nucleus-type" 属性と各エッジに類似した意味属性を持つ異種グラフとして定式化する。
我々のフレームワークは、様々なタスクに対してかなりのマージンで最先端の手法より優れています。
論文 参考訳(メタデータ) (2023-07-09T14:43:40Z) - CGAM: Click-Guided Attention Module for Interactive Pathology Image
Segmentation via Backpropagating Refinement [8.590026259176806]
腫瘍領域のセグメンテーションは、デジタル病理の定量的解析に欠かせない課題である。
最近のディープニューラルネットワークは、様々な画像分割タスクで最先端のパフォーマンスを示している。
本稿では,クリック型ユーザインタラクションによるディープニューラルネットワークの出力を改良する対話的セグメンテーション手法を提案する。
論文 参考訳(メタデータ) (2023-07-03T13:45:24Z) - Self-Supervised Correction Learning for Semi-Supervised Biomedical Image
Segmentation [84.58210297703714]
半教師付きバイオメディカルイメージセグメンテーションのための自己教師付き補正学習パラダイムを提案する。
共有エンコーダと2つの独立デコーダを含むデュアルタスクネットワークを設計する。
異なるタスクのための3つの医用画像分割データセットの実験により,本手法の優れた性能が示された。
論文 参考訳(メタデータ) (2023-01-12T08:19:46Z) - Adaptive Context Selection for Polyp Segmentation [99.9959901908053]
本稿では,ローカルコンテキストアテンション(LCA)モジュール,グローバルコンテキストモジュール(GCM)モジュール,適応選択モジュール(ASM)モジュールで構成される適応コンテキスト選択に基づくエンコーダデコーダフレームワークを提案する。
LCAモジュールは、エンコーダ層からデコーダ層へローカルなコンテキスト機能を提供する。
GCMは、グローバルなコンテキストの特徴をさらに探求し、デコーダ層に送信することを目的としている。ASMは、チャンネルワイドアテンションを通じて、コンテキスト特徴の適応的選択と集約に使用される。
論文 参考訳(メタデータ) (2023-01-12T04:06:44Z) - Accurate Cell Segmentation in Digital Pathology Images via Attention
Enforced Networks [0.0]
本研究では,グローバルな依存関係と重み付きチャネルを適応的に統合するアテンション強化ネットワーク(AENet)を提案する。
実験段階では, 染色変化問題に対処するために, 個々の色正規化法を提案する。
論文 参考訳(メタデータ) (2020-12-14T03:39:33Z) - Attention-Based Transformers for Instance Segmentation of Cells in
Microstructures [22.215852332444904]
本稿では, 直接端対端のインスタンスセグメンテーションのための新しいアテンションベースセル検出トランス (Cell-DETR) を提案する。
セグメンテーション性能は最先端のインスタンスセグメンテーション法と同等だが、Cell-DETRはよりシンプルで高速である。
特定のユースケースでは、提案手法は意味的セグメンテーションのための最先端のツールを超越し、個別のオブジェクトインスタンスを予測する。
論文 参考訳(メタデータ) (2020-11-19T10:49:56Z) - Shape-aware Meta-learning for Generalizing Prostate MRI Segmentation to
Unseen Domains [68.73614619875814]
前立腺MRIのセグメント化におけるモデル一般化を改善するために,新しい形状認識メタラーニング手法を提案する。
実験結果から,本手法は未確認領域の6つの設定すべてにおいて,最先端の一般化手法を一貫して上回っていることが明らかとなった。
論文 参考訳(メタデータ) (2020-07-04T07:56:02Z) - Self-Guided Adaptation: Progressive Representation Alignment for Domain
Adaptive Object Detection [86.69077525494106]
非教師なしドメイン適応(UDA)は、オブジェクト検出モデルのドメイン間ロバスト性を改善するために前例のない成功を収めた。
既存のUDA手法は、モデル学習中の瞬間的なデータ分布を無視しており、大きなドメインシフトによって特徴表現が劣化する可能性がある。
本稿では、特徴表現の整合とドメイン間のオブジェクト検出モデルの転送を目標とする自己ガイド適応モデルを提案する。
論文 参考訳(メタデータ) (2020-03-19T13:30:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。