Implicit Neural Representations for Speed-of-Sound Estimation in Ultrasound
- URL: http://arxiv.org/abs/2409.14035v1
- Date: Sat, 21 Sep 2024 06:43:38 GMT
- Title: Implicit Neural Representations for Speed-of-Sound Estimation in Ultrasound
- Authors: Michal Byra, Piotr Jarosik, Piotr Karwat, Ziemowit Klimonda, Marcin Lewandowski,
- Abstract summary: Implicit neural representations (INRs) are a type of neural network architecture that encodes continuous functions, such as images or physical quantities, through the weights of a network.
In this work, we utilize INRs for speed-of-sound (SoS) estimation in US.
- Score: 3.9665976815001165
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Accurate estimation of the speed-of-sound (SoS) is important for ultrasound (US) image reconstruction techniques and tissue characterization. Various approaches have been proposed to calculate SoS, ranging from tomography-inspired algorithms like CUTE to convolutional networks, and more recently, physics-informed optimization frameworks based on differentiable beamforming. In this work, we utilize implicit neural representations (INRs) for SoS estimation in US. INRs are a type of neural network architecture that encodes continuous functions, such as images or physical quantities, through the weights of a network. Implicit networks may overcome the current limitations of SoS estimation techniques, which mainly arise from the use of non-adaptable and oversimplified physical models of tissue. Moreover, convolutional networks for SoS estimation, usually trained using simulated data, often fail when applied to real tissues due to out-of-distribution and data-shift issues. In contrast, implicit networks do not require extensive training datasets since each implicit network is optimized for an individual data case. This adaptability makes them suitable for processing US data collected from varied tissues and across different imaging protocols. We evaluated the proposed SoS estimation method based on INRs using data collected from a tissue-mimicking phantom containing four cylindrical inclusions, with SoS values ranging from 1480 m/s to 1600 m/s. The inclusions were immersed in a material with an SoS value of 1540 m/s. In experiments, the proposed method achieved strong performance, clearly demonstrating the usefulness of implicit networks for quantitative US applications.
Related papers
- A Unified Model for Compressed Sensing MRI Across Undersampling Patterns [69.19631302047569]
Deep neural networks have shown great potential for reconstructing high-fidelity images from undersampled measurements.
Our model is based on neural operators, a discretization-agnostic architecture.
Our inference speed is also 1,400x faster than diffusion methods.
arXiv Detail & Related papers (2024-10-05T20:03:57Z) - On the Convergence of Locally Adaptive and Scalable Diffusion-Based Sampling Methods for Deep Bayesian Neural Network Posteriors [2.3265565167163906]
Bayesian neural networks are a promising approach for modeling uncertainties in deep neural networks.
generating samples from the posterior distribution of neural networks is a major challenge.
One advance in that direction would be the incorporation of adaptive step sizes into Monte Carlo Markov chain sampling algorithms.
In this paper, we demonstrate that these methods can have a substantial bias in the distribution they sample, even in the limit of vanishing step sizes and at full batch size.
arXiv Detail & Related papers (2024-03-13T15:21:14Z) - Deep Multi-Threshold Spiking-UNet for Image Processing [51.88730892920031]
This paper introduces the novel concept of Spiking-UNet for image processing, which combines the power of Spiking Neural Networks (SNNs) with the U-Net architecture.
To achieve an efficient Spiking-UNet, we face two primary challenges: ensuring high-fidelity information propagation through the network via spikes and formulating an effective training strategy.
Experimental results show that, on image segmentation and denoising, our Spiking-UNet achieves comparable performance to its non-spiking counterpart.
arXiv Detail & Related papers (2023-07-20T16:00:19Z) - Learning-based sound speed estimation and aberration correction in
linear-array photoacoustic imaging [3.190109710735486]
Photoacoustic (PA) image reconstruction involves the specification of the speed of sound (SoS) within the medium of propagation.
Due to the lack of information on the spatial distribution of the SoS within heterogeneous soft tissue, a homogeneous SoS distribution is typically assumed in PA image reconstruction.
We introduce a deep learning framework for SoS estimation and subsequent aberration correction in a dual-modal PA/US imaging system.
arXiv Detail & Related papers (2023-06-19T15:58:10Z) - Increasing the Accuracy of a Neural Network Using Frequency Selective
Mesh-to-Grid Resampling [4.211128681972148]
We propose the use of keypoint frequency selective mesh-to-grid resampling (FSMR) for the processing of input data for neural networks.
We show that depending on the network architecture and classification task the application of FSMR during training aids learning process.
The classification accuracy can be increased by up to 4.31 percentage points for ResNet50 and the Oxflower17 dataset.
arXiv Detail & Related papers (2022-09-28T21:34:47Z) - WeightMom: Learning Sparse Networks using Iterative Momentum-based
pruning [0.0]
We propose a weight based pruning approach in which the weights are pruned gradually based on their momentum of the previous iterations.
We evaluate our approach on networks such as AlexNet, VGG16 and ResNet50 with image classification datasets such as CIFAR-10 and CIFAR-100.
arXiv Detail & Related papers (2022-08-11T07:13:59Z) - Ultrasound Scatterer Density Classification Using Convolutional Neural
Networks by Exploiting Patch Statistics [3.93098730337656]
Quantitative ultrasound (QUS) can reveal crucial information on tissue properties such as scatterer density.
scatterer density per resolution cell is considered as fully developed speckle (FDS) or low-density scatterers (LDS)
We propose a convolutional neural network (CNN) architecture for QUS, and train it using simulation data.
arXiv Detail & Related papers (2020-12-04T17:36:57Z) - Deep Networks for Direction-of-Arrival Estimation in Low SNR [89.45026632977456]
We introduce a Convolutional Neural Network (CNN) that is trained from mutli-channel data of the true array manifold matrix.
We train a CNN in the low-SNR regime to predict DoAs across all SNRs.
Our robust solution can be applied in several fields, ranging from wireless array sensors to acoustic microphones or sonars.
arXiv Detail & Related papers (2020-11-17T12:52:18Z) - Searching for Low-Bit Weights in Quantized Neural Networks [129.8319019563356]
Quantized neural networks with low-bit weights and activations are attractive for developing AI accelerators.
We present to regard the discrete weights in an arbitrary quantized neural network as searchable variables, and utilize a differential method to search them accurately.
arXiv Detail & Related papers (2020-09-18T09:13:26Z) - ESPN: Extremely Sparse Pruned Networks [50.436905934791035]
We show that a simple iterative mask discovery method can achieve state-of-the-art compression of very deep networks.
Our algorithm represents a hybrid approach between single shot network pruning methods and Lottery-Ticket type approaches.
arXiv Detail & Related papers (2020-06-28T23:09:27Z) - Compressive sensing with un-trained neural networks: Gradient descent
finds the smoothest approximation [60.80172153614544]
Un-trained convolutional neural networks have emerged as highly successful tools for image recovery and restoration.
We show that an un-trained convolutional neural network can approximately reconstruct signals and images that are sufficiently structured, from a near minimal number of random measurements.
arXiv Detail & Related papers (2020-05-07T15:57:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.