論文の概要: The use of GPT-4o and Other Large Language Models for the Improvement and Design of Self-Assessment Scales for Measurement of Interpersonal Communication Skills
- arxiv url: http://arxiv.org/abs/2409.14050v1
- Date: Sat, 21 Sep 2024 07:37:21 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-07 03:55:36.785329
- Title: The use of GPT-4o and Other Large Language Models for the Improvement and Design of Self-Assessment Scales for Measurement of Interpersonal Communication Skills
- Title(参考訳): GPT-4oとその他の大規模言語モデルを用いた対人コミュニケーションスキル測定のための自己評価尺度の改良と設計
- Authors: Goran Bubaš,
- Abstract要約: OpenAIのChatGPT(GPT-4およびGPT-4o)およびその他の大規模言語モデル(LLM)は、科学研究の様々な段階において効果的に利用できる。
多様な言語タスクや推論におけるそれらのパフォーマンスは、平均的な人間レベルに近いかそれ以上である。
本稿では, GPT-4o や他の高度な LLM を, 自己評価尺度の設計における典型的な課題に利用できる可能性について述べる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: OpenAI's ChatGPT (GPT-4 and GPT-4o) and other Large Language Models (LLMs) like Microsoft's Copilot, Google's Gemini 1.5 Pro, and Antrophic's Claude 3.5 Sonnet can be effectively used in various phases of scientific research. Their performance in diverse verbal tasks and reasoning is close to or above the average human level and rapidly increasing, providing those models with a capacity that resembles a relatively high level of theory of mind. The current ability of LLMs to process information about human psychology and communication creates an opportunity for their scientific use in the fields of personality psychology and interpersonal communication skills. This article illustrates the possible uses of GPT-4o and other advanced LLMs for typical tasks in designing self-assessment scales for interpersonal communication skills measurement like the selection and improvement of scale items and evaluation of content validity of scales. The potential for automated item generation and application is illustrated as well. The case study examples are accompanied by prompts for LLMs that can be useful for these purposes. Finally, a summary is provided of the potential benefits of using LLMs in the process of evaluation, design, and improvement of interpersonal communication skills self-assessment scales.
- Abstract(参考訳): OpenAIのChatGPT(GPT-4とGPT-4o)およびMicrosoftのCopilot、GoogleのGemini 1.5 Pro、AntrophicのClaude 3.5 Sonnetのようなその他のLarge Language Model(LLM)は、科学的研究の様々なフェーズで効果的に利用できる。
多様な言語タスクや推論におけるそれらのパフォーマンスは、平均的な人間レベルに近いかそれ以上であり、急速に増加し、それらのモデルが比較的高い心の理論に類似した能力を提供する。
人間の心理学やコミュニケーションに関する情報を処理するLLMの現在の能力は、パーソナリティ心理学や対人コミュニケーションスキルの分野での科学的利用の機会を生み出している。
本稿では, GPT-4o や他の先進 LLM を用いて, 対人コミュニケーションスキル測定のための自己評価尺度を設計し, スケール項目の選択と改善, スケールのコンテンツ妥当性の評価を行う。
自動アイテム生成とアプリケーションの可能性も説明されている。
ケーススタディの例は、これらの目的に有用なLSMのプロンプトを伴っている。
最後に、対人コミュニケーションスキルの自己評価尺度の評価、設計、改善にLLMを使うことの潜在的な利点について概説する。
関連論文リスト
- LMLPA: Language Model Linguistic Personality Assessment [11.599282127259736]
大規模言語モデル(LLM)は、日常の生活や研究にますます利用されている。
与えられたLLMの性格を測定することは、現在課題である。
言語モデル言語パーソナリティアセスメント(LMLPA)は,LLMの言語的パーソナリティを評価するシステムである。
論文 参考訳(メタデータ) (2024-10-23T07:48:51Z) - MAgIC: Investigation of Large Language Model Powered Multi-Agent in
Cognition, Adaptability, Rationality and Collaboration [102.41118020705876]
大規模言語モデル(LLM)は自然言語処理の分野で大きな進歩を遂げている。
アプリケーションがマルチエージェント環境に拡張されるにつれ、包括的な評価フレームワークの必要性が高まっている。
この研究は、マルチエージェント設定内でLLMを評価するために特別に設計された新しいベンチマークフレームワークを導入している。
論文 参考訳(メタデータ) (2023-11-14T21:46:27Z) - Think Before You Speak: Cultivating Communication Skills of Large Language Models via Inner Monologue [73.69510478736483]
大規模言語モデル(LLM)は、流動的で一貫性があり多様な応答を生成する。
しかし、それらは重要な能力、コミュニケーションスキルを欠いている。
本稿は,内的モノローグによるLLMのコミュニケーション能力向上を目的としている。
実験の結果,提案したCSIM戦略はバックボーンモデルを改善し,ベースラインよりも優れていた。
論文 参考訳(メタデータ) (2023-11-13T16:19:42Z) - Skill-Mix: a Flexible and Expandable Family of Evaluations for AI models [50.11814354654953]
AIエージェントの主な能力は、必要に応じて、学習した基本的なスキルを柔軟に組み合わせることである。
この研究は、スキルを組み合わせる能力を測定するための新しい評価であるSkill-Mixを導入している。
論文 参考訳(メタデータ) (2023-10-26T16:55:05Z) - Harnessing the Power of Large Language Models for Empathetic Response Generation: Empirical Investigations and Improvements [28.630542719519855]
本研究では,大規模言語モデル(LLM)の共感応答生成における性能について実験的に検討する。
大規模な実験により, LLMは提案手法の利点を大いに生かし, 自動評価と人的評価の両方で最先端の性能を達成できることが示されている。
論文 参考訳(メタデータ) (2023-10-08T12:21:24Z) - Affect Recognition in Conversations Using Large Language Models [9.689990547610664]
影響認識は人間のコミュニケーションにおいて重要な役割を担っている。
本研究では,会話における人間の影響を認識するための言語モデル(LLM)の能力について検討する。
論文 参考訳(メタデータ) (2023-09-22T14:11:23Z) - Large Language Models Can Infer Psychological Dispositions of Social Media Users [1.0923877073891446]
GPT-3.5とGPT-4は、ゼロショット学習シナリオにおいて、ユーザのFacebookステータス更新からビッグファイブの性格特性を導出できるかどうかを検証する。
その結果, LLM-inferred と self-reported trait score の間には r =.29 (range = [.22,.33]) の相関が認められた。
予測は、いくつかの特徴について、女性と若い個人にとってより正確であることが判明し、基礎となるトレーニングデータやオンライン自己表現の違いから生じる潜在的なバイアスが示唆された。
論文 参考訳(メタデータ) (2023-09-13T01:27:48Z) - Evaluating Language Models for Mathematics through Interactions [116.67206980096513]
大型言語モデル(LLM)と対話し,評価するためのプロトタイププラットフォームであるCheckMateを紹介した。
我々はCheckMateと共同で3つの言語モデル(InstructGPT, ChatGPT, GPT-4)を、学部レベルの数学の証明支援として評価する研究を行った。
我々は、人間の行動の分類を導き、概して肯定的な相関にもかかわらず、正しさと知覚的有用性の間に顕著な相違点があることを明らかにする。
論文 参考訳(メタデータ) (2023-06-02T17:12:25Z) - Document-Level Machine Translation with Large Language Models [91.03359121149595]
大規模言語モデル(LLM)は、様々な自然言語処理(NLP)タスクに対して、一貫性、凝集性、関連性、流動性のある回答を生成することができる。
本稿では,LLMの談話モデルにおける能力について詳細に評価する。
論文 参考訳(メタデータ) (2023-04-05T03:49:06Z) - ElitePLM: An Empirical Study on General Language Ability Evaluation of
Pretrained Language Models [78.08792285698853]
本稿では,事前学習型言語モデル(ElitePLM)の汎用言語能力評価に関する大規模実証的研究について述べる。
実験の結果,(1)訓練対象の異なるPLMは異なる能力試験に適しており,(2)下流タスクの微調整PLMはデータサイズや分布に敏感であり,(3)PLMは類似タスク間の転送性に優れていた。
論文 参考訳(メタデータ) (2022-05-03T14:18:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。