論文の概要: KALIE: Fine-Tuning Vision-Language Models for Open-World Manipulation without Robot Data
- arxiv url: http://arxiv.org/abs/2409.14066v1
- Date: Sat, 21 Sep 2024 08:45:16 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-07 03:44:25.420364
- Title: KALIE: Fine-Tuning Vision-Language Models for Open-World Manipulation without Robot Data
- Title(参考訳): KALIE:ロボットデータのないオープンワールドマニピュレーションのための微調整ビジョンランゲージモデル
- Authors: Grace Tang, Swetha Rajkumar, Yifei Zhou, Homer Rich Walke, Sergey Levine, Kuan Fang,
- Abstract要約: 本稿では,ロボット制御をスケーラブルに行うために,KALIE(Keypoint Affordance Learning from Imagined Environments)を提案する。
モーターコマンドを直接生成する代わりに、KALIEはポイントベースの価格表現を予測してロボットを制御する。
我々はKALIEが、50個のデータポイントしか持たない未確認オブジェクトで、新しい操作タスクを堅牢に解くことができることを実証した。
- 参考スコア(独自算出の注目度): 45.25288643161976
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Building generalist robotic systems involves effectively endowing robots with the capabilities to handle novel objects in an open-world setting. Inspired by the advances of large pre-trained models, we propose Keypoint Affordance Learning from Imagined Environments (KALIE), which adapts pre-trained Vision Language Models (VLMs) for robotic control in a scalable manner. Instead of directly producing motor commands, KALIE controls the robot by predicting point-based affordance representations based on natural language instructions and visual observations of the scene. The VLM is trained on 2D images with affordances labeled by humans, bypassing the need for training data collected on robotic systems. Through an affordance-aware data synthesis pipeline, KALIE automatically creates massive high-quality training data based on limited example data manually collected by humans. We demonstrate that KALIE can learn to robustly solve new manipulation tasks with unseen objects given only 50 example data points. Compared to baselines using pre-trained VLMs, our approach consistently achieves superior performance.
- Abstract(参考訳): 汎用ロボットシステムの構築には、オープンワールド環境で新しい物体を扱う能力を持つロボットを効果的に支援することが含まれる。
大規模な事前学習モデルの進歩に触発されて,ロボット制御のための事前学習型視覚言語モデル(VLM)をスケーラブルな方法で適用する,KALIE(Keypoint Affordance Learning from Imagined Environments)を提案する。
モーターコマンドを直接生成する代わりに、KALIEは、自然言語の指示とシーンの視覚的な観察に基づいて、ポイントベースのアベイランス表現を予測することによってロボットを制御する。
VLMは人間のラベルを付けた2D画像で訓練されており、ロボットシステムで収集されたトレーニングデータの必要性を回避している。
KALIEは、手動で収集した限られたサンプルデータに基づいて、手頃なデータ合成パイプラインを通じて、大量の高品質なトレーニングデータを自動的に生成する。
我々はKALIEが、50個のデータポイントしか持たない未確認オブジェクトで、新しい操作タスクを堅牢に解くことができることを実証した。
トレーニング済みのVLMを用いたベースラインと比較して,本手法は優れた性能を実現している。
関連論文リスト
- Latent Action Pretraining from Videos [156.88613023078778]
一般行動モデル(LAPA)のための潜在行動事前訓練について紹介する。
LAPA(英: LAPA)は、VLA(Vision-Language-Action)モデルに接地型ロボットアクションラベルを含まない教師なしの訓練方法である。
本稿では,ロボットアクションラベルを持たないインターネット規模のビデオから学習する手法を提案する。
論文 参考訳(メタデータ) (2024-10-15T16:28:09Z) - Robot Utility Models: General Policies for Zero-Shot Deployment in New Environments [26.66666135624716]
ゼロショットロボットポリシーのトレーニングとデプロイのためのフレームワークであるロボットユーティリティモデル(RUM)を提案する。
RUMは微調整なしで新しい環境に一般化できる。
キャビネットドアのオープン、引き出しのオープン、ナプキンのピックアップ、紙袋のピックアップ、転倒物の再配向の5つのユーティリティモデルを訓練する。
論文 参考訳(メタデータ) (2024-09-09T17:59:50Z) - LLARVA: Vision-Action Instruction Tuning Enhances Robot Learning [50.99807031490589]
LLARVAは,ロボット学習タスク,シナリオ,環境を統一するための,新しい指導指導法で訓練されたモデルである。
我々は,Open X-Embodimentデータセットから8.5Mの画像-視覚的トレースペアを生成し,モデルを事前学習する。
実験によって強い性能が得られ、LLARVAは現代のいくつかのベースラインと比較してよく機能することを示した。
論文 参考訳(メタデータ) (2024-06-17T17:55:29Z) - AutoRT: Embodied Foundation Models for Large Scale Orchestration of Robotic Agents [109.3804962220498]
AutoRTは、人間の監督を最小限に抑えて、完全に見えないシナリオで運用ロボットの展開をスケールアップするシステムである。
われわれはAutoRTが複数の建物にまたがる20以上のロボットに指示を提示し、遠隔操作と自律ロボットポリシーを通じて77万個の実ロボットエピソードを収集するデモを行った。
実験により,AutoRTが収集した「未使用データ」は極めて多種多様であり,AutoRTのLLMを使用することで,人間の好みに合わせることができるデータ収集ロボットの指示が可能であることを実証した。
論文 参考訳(メタデータ) (2024-01-23T18:45:54Z) - Robot Fine-Tuning Made Easy: Pre-Training Rewards and Policies for
Autonomous Real-World Reinforcement Learning [58.3994826169858]
ロボット強化学習のためのリセット不要な微調整システムであるRoboFuMEを紹介する。
我々の洞察は、オフラインの強化学習技術を利用して、事前訓練されたポリシーの効率的なオンライン微調整を確保することである。
提案手法では,既存のロボットデータセットからのデータを組み込んで,目標タスクを3時間以内の自律現実体験で改善することができる。
論文 参考訳(メタデータ) (2023-10-23T17:50:08Z) - Exploring Visual Pre-training for Robot Manipulation: Datasets, Models
and Methods [14.780597545674157]
本稿では,3つの基本的視点から,視覚的事前学習がロボット操作作業に及ぼす影響について検討する。
自己教師型学習と教師型学習を組み合わせた視覚的事前学習方式Vi-PRoMを提案する。
論文 参考訳(メタデータ) (2023-08-07T14:24:52Z) - RT-2: Vision-Language-Action Models Transfer Web Knowledge to Robotic
Control [140.48218261864153]
本研究では,インターネット規模のデータに基づいて学習した視覚言語モデルを,エンドツーエンドのロボット制御に直接組み込む方法について検討する。
提案手法は,インターネット規模のトレーニングから,RT-2による創発的能力の獲得を可能にした。
論文 参考訳(メタデータ) (2023-07-28T21:18:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。